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Abstract

We prove that continuous dynamics emerge from discrete causal structure through a

mechanism we call localization: the extraction of where a system sits in con�guration space

rather than enumeration of transitions between discrete states. Three necessity theorems

establish that optimal prediction from discrete event sequences with terminal boundaries

requires preservation of event identity, spectral temporal encoding, and learned causal at-

tention. Each component is individually irreducible. The architecture is not engineered but

derived from information-theoretic constraints.

The central result concerns gradient �ow from boundary conditions. We prove that

terminal outcomes shape the entire antecedent causal �eld through backpropagation, cre-

ating second-order structure where early events modify interpretation of later events. This

retroactive determination parallels the holographic principle: predictive information satis�es

an area law scaling with event count, not temporal duration.

The framework uni�es phenomena across substrates because localization creates shared

coordinates that enable cross-trajectory learning: populations of event sequences reveal the

universal geometry of progression toward boundary. Any system generating discrete times-

tamped events with terminal boundaries instantiates the same mathematical structure, dis-

solving the distinction between exact and statistical sciences. We prove why transformer

architectures succeed and establish that positional encoding is categorically incorrect for

timestamped data. Empirical predictions are falsi�able: architectures satisfying the ne-

cessity theorems should extract continuous dynamics that tabular methods systematically

discard.
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1 Introduction

How does continuous description emerge from discrete structure?
This question appears wherever physics confronts foundations. Quantum mechanics delivers

discrete spectra; thermodynamics requires continuous variables. Particle interactions are count-
able events; scattering amplitudes are continuous functions. Causal set theory proposes discrete
spacetime events; general relativity assumes smooth manifolds.

The standard resolution discretizes the continuum: lattice approximations, cuto� regulariza-
tion, �nite element methods. But this inverts the ontology. If discrete structure is fundamental,
continuous description should emerge, not be imposed and subsequently approximated.

We establish emergence through localization: continuous observables arise from determining
where a system sits in con�guration space, not from counting transitions between discrete states.
The mechanism operates identically across domains.

1.1 The Discrete-Continuous Tension

Consider three manifestations:
Spectroscopy. Ions in crystal lattices occupy discrete sites. Optical transitions occur at

discrete frequencies. Yet absorption spectra are continuous curves. Standard theory sums over
vibrational quanta. The continuous spectrum emerges as in�nite series over discrete transitions.

Prediction. Events in time are discrete occurrences. Yet optimal prediction requires model-
ing continuous risk dynamics. Standard approaches �t continuous hazard functions or compress
sequences through recurrent hidden states simulating continuous evolution.

Spacetime. Causal set theory proposes that spacetime events form a locally �nite poset,
with continuous Lorentzian geometry emerging through coarse-graining. The approach is math-
ematically coherent but empirically inaccessible at Planck scale.

In each case, discrete structure is primary; continuous description is derived. We prove this
derivation follows a universal pattern.

1.2 Main Results

1. Localization Principle. Continuous observables emerge from detecting system position
in con�guration space without enumerating discrete transitions (Section 2).

2. Necessity Theorems. Optimal extraction of continuous dynamics from discrete event
sequences requires three irreducible components: discrete event representation, spectral
temporal encoding, and learned causal attention (Section 4).

3. Boundary Determination. Terminal conditions shape the entire antecedent �eld through
gradient �ow, creating second-order causal structure (Section 5).

4. Holographic Information Bound. Predictive information satis�es an area law: it scales
with event count (boundary), not temporal duration (bulk) (Section 6).

5. Substrate Independence. Localization creates shared coordinates enabling cross-trajectory
learning. Populations of event sequences reveal universal geometry of progression toward
boundary. The mathematical structure applies uniformly across physical, biological, and
social systems (Section 7).

2 Localization

2.1 The Principle

A measurement reveals where a system is, not how it got there.
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This observation, elementary in classical mechanics, has non-trivial implications for emer-
gence. When we ask how continuous observables arise from discrete structure, the standard
answer traces paths through discrete state space. Localization o�ers an alternative: the observ-
able is determined by instantaneous con�guration; the path is irrelevant.

De�nition 2.1 (Con�guration Space). A con�guration space C is a set equipped with topology.
A con�guration is a point q ∈ C. An observable is a continuous function O : C → R.

De�nition 2.2 (Localization). An observation O(q) is obtained by localization if it depends only
on the instantaneous con�guration q, not on the trajectory q(t) leading to it.

2.2 Spatial Con�guration

In optical spectroscopy, the con�guration space is the lattice potential landscape. An ion's
absorption probability at frequency ω depends on where it sits in this landscape at the moment
of photon interaction:

W (ω; q) =
2π

ℏ
|⟨f |µ̂(q)|i⟩|2δ(ω − ωif (q)) (1)

The continuous spectrum emerges not from summing over phonon states but from averaging
over con�guration space:

I(ω) =

∫
C
W (ω; q) ρ(q) dq (2)

where ρ(q) is the thermal distribution over con�gurations.
No phonon counting. The light detects where the ion sits. The continuum emerges from the

probability distribution over positions.

2.3 Temporal Con�guration

Extend the principle to time. An event's predictive content depends on where it sits in causal
con�guration.

De�nition 2.3 (Causal Con�guration). For event e in event space M, its causal con�guration
is the pair (J−(e), τ(e)) where:

� J−(e) = {e′ ∈ E : e′ ≺ e} is the causal past

� τ(e) ∈ R+ is the temporal coordinate

Just as an ion's spectral signature depends on spatial position in the lattice potential, an
event's predictive contribution depends on temporal position in causal structure.

The continuous dynamics of risk, trajectory, evolution: these emerge from the distribution
over causal con�gurations, not from counting transitions between discrete states.

3 Event Topology

3.1 Formal Structure

De�nition 3.1 (Event Space). An event space is a tuple M = (E,≺, τ, κ) where:

� E is a �nite set of events

� ≺ is a partial order on E (causal precedence)

� τ : E → R+ is order-preserving: e ≺ e′ ⇒ τ(e) < τ(e′)

� κ : E → C assigns event types from �nite vocabulary C
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De�nition 3.2 (Causal Structure). The causal past is J−(e) = {e′ : e′ ≺ e}. The causal future
is J+(e) = {e′ : e ≺ e′}. The causal diamond is ♢(ei, ej) = J+(ei) ∩ J−(ej).

De�nition 3.3 (Boundary). An event e† is a terminal boundary if J+(e†) = ∅. A prediction
horizon T < τ(e†) de�nes the observable past J−(T ) = {e : τ(e) < T}.

3.2 The Prediction Problem

Given event space M observed up to horizon T , predict the terminal boundary event e†.

De�nition 3.4 (Predictor). A predictor is a measurable function µ : M|T → [0, 1] where M|T
denotes the event space restricted to J−(T ).

The problem: characterize optimal predictors µ∗ minimizing expected loss over distribution
p(M).

4 Necessity Theorems

We prove that optimal prediction requires three architectural components, each individually
irreducible.

4.1 Information Bound

Axiom 4.1 (Holographic Bound). Predictive mutual information satis�es:

I(µ(M); e†) ≤ C · |J−(T )| (3)

where C is bits per event and |J−(T )| is the event count in observable past.

Remark 4.2. Information scales with event count (the boundary of causal past), not temporal
duration (the bulk). This is the holographic principle: bulk information is bounded by boundary
area.

4.2 Necessity of Discrete Event Representation

Theorem 4.3 (Discrete Events are Necessary). Let f : P(C) × P(R+) → [0, 1] depend only
on marginal distributions of event types and timestamps. There exist event spaces M1,M2

satisfying:

1. Identical type marginals: πC(M1) = πC(M2)

2. Identical time marginals: πτ (M1) = πτ (M2)

3. Di�erent optimal predictions: µ∗(M1) ̸= µ∗(M2)

Thus f(M1) = f(M2) but the prediction task requires distinguishing them.

Proof. Construct:

M1 = {(A, t1) ≺ (B, t2)} (4)

M2 = {(B, t1) ≺ (A, t2)} (5)

Both have type set {A,B} and timestamp set {t1, t2}, hence identical marginals. Any func-
tion of marginals gives f(M1) = f(M2).

However, causal order carries predictive information. If A ≺ B indicates causal cascade while
B ≺ A indicates independent occurrence, optimal predictions di�er.

Formally: let p(e† = 1|A ≺ B) = 0.8 and p(e† = 1|B ≺ A) = 0.3. Then µ∗(M1) = 0.8 ̸=
0.3 = µ∗(M2), but any marginal-based function cannot distinguish them.

Corollary 4.4. Tabular representations aggregating event counts discard predictive information
encoded in causal order.
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4.3 Necessity of Spectral Temporal Encoding

De�nition 4.5 (Ordinal Encoding). An encoding ϕ : E → Rd is ordinal if it depends only on
sequence position: ϕ(ek) = PE(k) for some �xed function PE : N → Rd.

Theorem 4.6 (Temporal Encoding is Necessary). Let g : Cn → [0, 1] depend only on the se-
quence of event types with ordinal encoding. There exist event spaces with identical type sequences
but di�erent temporal geometry requiring di�erent optimal predictions.

Proof. Construct:

M1 = {(c, 0), (c, 1), (c, 2)} (6)

M2 = {(c, 0), (c, ϵ), (c, T )} (7)

for small ϵ and large T .
Both have type sequence (c, c, c). Ordinal encoding assigns positions (1, 2, 3) to both. Thus

g(M1) = g(M2).
However, M1 has uniform inter-event spacing (stable rate), while M2 has rapid initial events

then quiescence (burst then silence). These represent geometrically distinct trajectories.
Let p(e† = 1|uniform) = 0.2 and p(e† = 1|burst) = 0.7. Optimal predictions di�er; ordinal

encoding cannot distinguish them.

De�nition 4.7 (Spectral Temporal Encoding). A spectral temporal encoding is:

Φθ(t) = (ω0t+ ϕ0, sin(ω1t+ ϕ1), . . . , sin(ωd−1t+ ϕd−1)) (8)

with learnable parameters θ = {ωk, ϕk}.

Theorem 4.8 (Universal Approximation). For any f ∈ C([0, T ]) and ε > 0, there exist θ and
linear L : Rd → R with ∥f − L ◦ Φθ∥∞ < ε.

Proof. The set A = {1, t, sin(ωt + ϕ) : ω, ϕ ∈ R} generates a subalgebra of C([0, T ]) that
separates points (via the linear function t) and vanishes nowhere (contains constant 1). By Stone-
Weierstrass, A is uniformly dense. Any f ∈ C([0, T ]) is approximable by linear combinations
from A, which is precisely L ◦ Φθ for appropriate θ.

Remark 4.9. The frequencies ωk are discovered by gradient descent, not prescribed. Learning
identi�es characteristic timescales at which causal structure operates.

4.4 Necessity of Causal Attention

De�nition 4.10 (Fixed Aggregation). A �xed aggregation predictor has form:

h(M) = F

(∑
e∈E

w(κ(e)) · ψ(e)

)
(9)

where weights w : C → R depend only on event type, not context.

Theorem 4.11 (Attention is Necessary). There exist prediction tasks where optimal prediction
requires context-dependent event interpretation that �xed aggregation cannot provide.

Proof. Let event type c appear in two contexts:

MA = {(c1, t1) ≺ (c, t2)} (10)

MB = {(c2, t1) ≺ (c, t2)} (11)
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where c1, c2 are background conditions that modulate interpretation of c.
Fixed aggregation assigns weight w(c) regardless of context. But if c1 indicates c is dangerous

while c2 indicates c is benign:

p(e† = 1|c1 ≺ c) = 0.9 (12)

p(e† = 1|c2 ≺ c) = 0.1 (13)

Optimal prediction requires context-dependent weights: α(c|c1) ̸= α(c|c2).
De�ne causal attention:

α(ei, ej) =
exp⟨Qψ(ei),Kψ(ej)⟩∑

ek≺ei
exp⟨Qψ(ei),Kψ(ek)⟩

(14)

This provides context-dependent weighting that �xed aggregation cannot.

4.5 The Minimal Architecture

Theorem 4.12 (Minimal Causal Encoding). Under Axiom 4.1, optimal predictors admit fac-
torization:

µ∗(M) = F ◦ T L
α ◦ (ψ ⊕ Φθ ◦ τ) (15)

where:

� ψ : C → Rd embeds event types (Theorem 4.3)

� Φθ ◦ τ spectrally encodes timestamps (Theorem 4.6)

� T L
α applies L layers of causal attention (Theorem 4.11)

� F : Rd → [0, 1] is output transformation

Each component is necessary; removing any one reduces achievable performance.

Proof. Existence: The class of functions with this form is non-empty and closed under lim-
its in appropriate topology. Under compact parameter constraints, optimal solutions exist by
Weierstrass.

Necessity: Theorems 4.3, 4.6, 4.11 prove each component is independently required.
Uniqueness: Up to gauge transformations ψ 7→ Oψ, Q 7→ QOT , K 7→ KOT for orthogonal

O, which preserve attention scores, the factorization is unique.

5 Gradient Flow and Boundary Determination

The necessity theorems establish architectural requirements. We now prove the deeper result:
terminal boundary conditions determine the entire antecedent causal �eld through gradient �ow.

5.1 The Boundary Principle

In general relativity, boundary conditions (initial data on a spacelike surface) determine the
entire spacetime evolution. In thermodynamics, boundary conditions (temperature at surfaces)
determine equilibrium distributions throughout the bulk.

We prove an analogous principle: the terminal boundary event e† determines the learned
causal weights throughout the antecedent event structure.
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5.2 Gradient Decomposition

Theorem 5.1 (Path Decomposition of Gradients). Let L(θ) = − log p(e†|M; θ) be the prediction
loss. The gradient with respect to event embedding ψ(ej) decomposes over causal paths:

∂L
∂ψ(ej)

=
∑

γ∈Γ(ej ,e†)

wγ · vγ (16)

where Γ(ej , e
†) is the set of directed paths from ej to boundary, wγ is path weight, and vγ is path

direction.

Proof. By chain rule through L attention layers:

∂L
∂ψ(ej)

=
L∑

ℓ=1

∂L
∂h(ℓ)

· ∂h(ℓ)

∂ψ(ej)
(17)

Each layer propagates through attention:

h
(ℓ)
i =

∑
k:ek≺ei

α(ℓ)(ei, ek) · V (ℓ)h
(ℓ−1)
k (18)

The contribution of ψ(ej) to h
(L) �ows through all paths γ : ej ≺ · · · ≺ ei where ei in�uences

the output. Each path contributes weight:

wγ =
∏

(ek′ ,ek′′ )∈γ

α(ek′ , ek′′) (19)

Summing over all paths gives the stated decomposition.

5.3 Retroactive Causation

De�nition 5.2 (Causal Susceptibility). The causal susceptibility tensor is:

χ(ei, ej) =
∂2L

∂ψ(ei)∂ψ(ej)
(20)

Theorem 5.3 (Second-Order Structure). The susceptibility χ(ei, ej) is generically non-zero for
causally related events, capturing how ei modi�es the predictive impact of ej.

Proof. For ei ≺ ej , the path from ei to boundary passes through ej . The attention weight
α(ej , ei) depends on both ψ(ei) and ψ(ej) through the softmax:

α(ej , ei) =
exp⟨Qψ(ej),Kψ(ei)⟩∑
k≺j exp⟨Qψ(ej),Kψ(ek)⟩

(21)

Thus:
∂α(ej , ei)

∂ψ(ei)
̸= 0,

∂α(ej , ei)

∂ψ(ej)
̸= 0 (22)

The mixed partial ∂2L/∂ψ(ei)∂ψ(ej) inherits non-zero contributions from the chain rule.

Remark 5.4. This is retroactive determination: event ei occurring early in the sequence modi�es
how later event ej is interpreted. The modi�cation is not forward causation (events cannot
in�uence their past) but learned correlation structure shaped by the terminal boundary through
gradient descent.
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5.4 The Boundary Determines the Field

Corollary 5.5 (Boundary Determination Principle). At convergence, the learned attention
weights α∗ satisfy:

α∗(ei, ej) ∝
∂

∂ψ(ej)
log p(e†|M) (23)

The terminal boundary determines the entire causal weighting structure.

Proof. At critical points of L, gradients vanish: ∂L/∂θ = 0. The attention weights are �xed
points of gradient �ow from the boundary. Di�erent boundaries (di�erent terminal outcomes in
training distribution) yield di�erent weight con�gurations.

This parallels general relativity: boundary data on a surface determines the geometry
throughout the bulk. Here, boundary data (terminal events) determines the causal geometry
(attention weights) throughout the antecedent structure.

6 Holographic Structure

6.1 The Bekenstein Analogy

Bekenstein (1973) proved that black hole entropy is proportional to horizon area, not enclosed
volume:

SBH =
kBc

3

4Gℏ
A (24)

This led to the holographic principle: information in a region is bounded by its boundary
area.

6.2 Information Bound in Event Topology

Theorem 6.1 (Area Law for Predictive Information). Under Axiom 4.1, predictive information
scales with event count:

I(µ; e†) ≤ C · |J−(T )| (25)

This is an area law: information scales with the boundary of causal past (event count), not with
bulk volume (temporal duration).

Proof. Each event carries at most C bits of predictive information (�nite vocabulary, bounded
correlations). Events are the atoms of the causal structure; their count is the natural measure
of boundary size.

Temporal duration is the bulk: a period of 10 years with 5 events contains less information
than a period of 1 year with 100 events. Information is where events are, not where time
passes.

6.3 The CLS Token as Holographic Screen

In the architecture of Theorem 4.12, a classi�cation token aggregates information from all events
through attention:

hCLS =
∑
e∈E

α(CLS, e) · V ψ(e) (26)

Proposition 6.2 (Holographic Encoding). The CLS representation hCLS encodes all predictive
information from the event sequence, with attention weights α(CLS, e) acting as the holographic
dictionary mapping bulk (events) to boundary (representation).

Proof. By Theorem 4.12, optimal prediction factors through hCLS. By Theorem 6.1, this repre-
sentation contains all extractable predictive information, bounded by event count. The attention
weights determine which bulk events contribute to the boundary representation.
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6.4 Correspondence Table

Holography (Spacetime) Event Topology

Black hole interior Causal past J−(T )
Event horizon Prediction horizon T
Horizon area Event count |J−(T )|
Bekenstein entropy S ∝ A Information bound I ≤ C|J−(T )|
Holographic screen CLS token
Bulk-boundary dictionary Attention weights α
Boundary determines bulk Gradient �ow from e†

7 Substrate Independence

7.1 Why Universality Holds

The necessity theorems establish what architecture is required. We now explain why the same
mathematics governs disparate substrates.

The key insight: localization in learned coordinates enables cross-trajectory interrogation.
Consider a population of trajectories {M1,M2, . . . ,MN}, each a sequence of discrete events

terminating at boundary. Spectral temporal encoding places events from all trajectories into a
shared coordinate system:

Φθ : R+ → Rd (27)

Events at similar temporal coordinates, across di�erent trajectories, become comparable.
The attention weights learned from the population encode:

α∗(ei, ej) = f(�event type κ(ej) at temporal location Φθ(τ(ej)) predicts boundary�) (28)

This is population-level knowledge compiled into individual prediction. The learned fre-
quencies {ωk} are not arbitrary basis functions but the characteristic timescales at which causal
structure operates across the population.

Theorem 7.1 (Cross-Trajectory Learning). The continuum extracted by localization is not the
individual trajectory smoothed. It is the population-learned manifold of progression toward bound-
ary.

Proof. Gradient �ow from boundaries (Section 5) shapes attention weights. The loss aggregates
over the population:

L(θ) =
N∑
i=1

Li(θ) = −
N∑
i=1

log p(e†i |Mi; θ) (29)

The learned parameters θ∗ minimize population loss, not individual loss. The spectral fre-
quencies, attention weights, and embedding geometry encode structure shared across trajecto-
ries. Individual prediction applies this population-learned structure to locate a single trajectory
within the shared manifold.

7.2 The Universal Geometry

What is this shared manifold? It is the phase space of evolution toward termination.
Stars traverse it (nucleosynthesis, shell burning, collapse). Patients traverse it (health, dis-

ease, deterioration). Companies traverse it (growth, stress, failure). Networks traverse it (normal
operation, anomaly, breach).

The substrates di�er. The geometry is identical: a space of causal con�gurations where
discrete events mark positions and terminal boundaries de�ne the attractor.
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Theorem 7.2 (Universality). Any system satisfying the event space axioms (De�nition 3.1)
with terminal boundary admits the minimal architecture of Theorem 4.12, because:

1. Discrete events require preservation (Theorem 4.3)

2. Temporal geometry requires spectral encoding (Theorem 4.6)

3. Context-dependence requires attention (Theorem 4.11)

4. Population learning requires shared coordinates (Theorem 7.1)

The architecture is not designed but derived from the structure of the prediction problem itself.

7.3 Instances

Domain Events Boundary Shared Manifold

Stellar evolution Nucleosynthesis stages Supernova/collapse Hertzsprung-Russell
trajectory

Medicine Encounters Death Disease progression
space

Finance Transactions Default Credit deterioration
manifold

Networks Packets Breach Threat evolution sur-
face

Particle physics Interactions Decay Amplitude landscape
Spacetime Events Singularity Lorentzian geometry

In each case, the continuum is not imposed but discovered: the population of trajectories
reveals the geometry of progression toward boundary, and localization places individual trajec-
tories within this learned structure.

7.4 Dissolution of Science Hierarchy

The distinction between �hard� sciences (physics, chemistry) and �soft� sciences (psychology,
economics, sociology) rests on an assumption: physical systems have mathematical structure
while social systems have only statistical regularities.

Corollary 7.3 (Dissolution). Any system generating discrete timestamped events with terminal
boundaries satis�es identical mathematical constraints. The hard/soft distinction is artifact, not
ontology.

Proof. The mathematics depends on three properties: discrete events, temporal coordinates,
terminal boundary. These are structural, not material. A stellar trajectory and a patient
trajectory instantiate the same causal topology because both are populations of event sequences
terminating at boundaries. Localization creates shared coordinates. Shared coordinates enable
cross-trajectory learning. Cross-trajectory learning discovers universal geometry. The substrate
is irrelevant; the structure is everything.

8 Implications for Machine Learning

8.1 Why Transformers Work

The transformer architecture (Vaswani et al., 2017) was discovered empirically. Eight years
later, theoretical foundation remains absent.
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Theorem 8.1 (Transformer Necessity). For prediction tasks on discrete event sequences with
terminal boundaries, transformer-like architectures with spectral temporal encoding are necessary
for optimal performance.

Proof. Direct consequence of Theorems 4.3, 4.6, 4.11. Self-attention implements the causal
in�uence kernel. Multi-head attention discovers multiple causal channels. Layer composition
builds hierarchical abstraction. These are not design choices but mathematical requirements.

8.2 Positional Encoding is a Category Error

�Positional encoding� encodes ordinal index (1st, 2nd, 3rd), not position. The name is a mis-
nomer that obscures a mathematical obstruction.

For language, ordinal index is all that exists. Tokens have no timestamps. PE(k) =
sin(k/100002i/d) assigns indices to sequence slots. This is appropriate: �the cat sat� di�ers
from �sat the cat� only in order.

For timestamped events, ordinal index discards the actual temporal geometry. Two sequences
with identical event types in identical order but di�erent temporal spacing require di�erent
predictions. Theorem 4.6 proves this is not a limitation but a mathematical obstruction: ordinal
encoding provably loses information that a�ects optimal prediction.

Corollary 8.2 (Categorical Error). For timestamped event sequences, ordinal positional encod-
ing is provably suboptimal. Spectral temporal encoding is necessary.

Proof. Theorem 4.6. Ordinal encoding discards temporal geometry that a�ects optimal predic-
tion.

Spectral temporal encoding performs actual localization: Φθ(t) extracts where events sit in
continuous time, learning characteristic frequencies at which causal structure operates. This is
localization applied to time.

Transformers succeeded on language �rst. Language has no time. The world does. Extension
to physical, biological, and social systems requires replacing the misnomer with localization.

9 Empirical Predictions

9.1 Falsi�ability

The framework generates testable predictions.

Prediction 9.1 (Architecture Su�ciency). Systems satisfying Theorem 4.12 will extract con-
tinuous dynamics that tabular methods and ordinal-encoded transformers cannot access.

Prediction 9.2 (Performance Gap Closure). In domains where data-rich and data-sparse set-
tings show performance gaps attributed to missing information, architectures satisfying the ne-
cessity theorems will close the gap, revealing the gap as architectural, not informational.

9.2 Why Medicine?

Medical prediction is optimal for validation:

� Events are discrete, timestamped (encounters have dates)

� Causal ordering is unambiguous (time �ows forward)

� Boundaries are binary, veri�able (mortality is observed)

� Datasets are large (millions of trajectories)
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� Comparisons exist (data-rich vs. data-sparse settings)

Success establishes the mathematics. Substrate independence (Theorem 7.2) guarantees
transfer to other domains.

10 Discussion

10.1 Summary of Claims

1. Localization is the mechanism of discrete-to-continuous emergence: observables reveal
where systems sit in con�guration space.

2. Three components are necessary: discrete events, spectral temporal encoding, and
causal attention. Each is irreducible.

3. Boundaries determine �elds: terminal conditions shape antecedent causal structure
through gradient �ow.

4. Information satis�es an area law: predictive content scales with event count, not tem-
poral duration.

5. Substrate independence follows from shared coordinates: localization enables cross-
trajectory learning; populations reveal universal geometry; physical, biological, and social
systems instantiate the same causal topology because structure, not substrate, determines
the mathematics.

10.2 What This Does Not Claim

� That current implementations are optimal (they approximate the necessary structure)

� That all prediction tasks require this architecture (only those with discrete timestamped
events and terminal boundaries)

� That social systems reduce to physical systems (both instantiate common mathematical
structure)

10.3 The Emergence Program

Physics has sought to derive continuous description from discrete structure since quantum me-
chanics revealed discreteness at fundamental scales. Causal set theory proposes discrete space-
time but lacks empirical access at Planck scale.

Event topology provides a laboratory. The mathematics of discrete-to-continuous emergence
operates at human scales with abundant data. The necessity theorems are provable; the predic-
tions are testable.

Whether the same mathematical structure governs Planck-scale physics is conjecture. That
it governs human-scale prediction is theorem.

The oscillator sits in con�guration space.
The event sits in causal time.

Localization extracts the continuum.
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