
Tensor-Based Computing in Contract Theory,
IO, and HJB PDE Macro Models

Victor V. Zhorin

Computation Institute

April 16, 2015

Based on

Edward C. Prescott and Robert Townsend, ”Pareto Optima and
Competitive Equilibria with Adverse Selection and Moral Hazard”,
Econometrica, 1984

Alexander Karaivanov and Robert Townsend, ”Dynamic Financial
Constraints: Distinguishing Mechanism Design from Exogenously
Incomplete Regimes”, Econometrica, 2014

Robert Townsend and Victor Zhorin, ”Spatial Competition among
Financial Service Providers and Optimal Contract Design”, 2014

Benjamin Moll
(http://www.princeton.edu/~moll/HACTproject.htm):
”Heterogeneous Agent Models in Continuous Time” (with Yves
Achdou, Jean-Michel Lasry and Pierre-Louis Lions)

Wolfgang Hackbusch, ”Tensor Spaces and Numerical Tensor
Calculus”, 2012

http://www.princeton.edu/~moll/HACTproject.htm

Key points

Computers are well-designed and heavily optimized to handle vector-
and matrix-based calculations for medium- and large-size problems

Numerical linear algebra libraries are well-developed and fast

Tensor-related (multi-dimensional, multivariate) problems are
common, highly complex and difficult (often considered
impossible/infeasible/intractable) to compute

Very large-size data intensive processing is typically required,
scalability is an issue

Focus on numerical tensor analysis techniques that are readily
available and generally applicable

The goal is to enable efficient high-performance computations for
economic models explicitly formulated in tensor format

Tensor-related problems in economics

Multivariate statistics and multi-dimensional structural estimations

Prescott-Townsend linear programming approach for
information-constrained non-linear contract models

Industrial Organization with heterogeneous types and
multi-dimensional characteristics

Stochastic Partial Differential Equation (SPDE) models in
macroeconomics and finance

Also: Hidden Markov Models, big data analysis, belief propagation,
global non-convex optimization problems, approximation and
interpolation of multivariate functions

Speedup: Algorithms vs. Machine improvement

R. E. Bixby, ”A Brief History of Linear and Mixed-Integer Programming Computation”, Documenta Math., 2012

CPLEX LP code from 1988 through 2002

Algorithmic improvement (machine independent)
Best of barrier, primal simplex, and dual simplex: 3300x

Machine improvement: 1600x

Total: 5,280,000x

5 months of computing→ ≈ 1.1 hour (due to better algorithms)→ ≈ 2.5 seconds (machine+algorithms)

Parallel Programming:
same task done faster or more complex task done in feasible time

SAXPY, single-precision real Alpha X Plus Y (BLAS, level 1):

Y ← α ∗ X + Y

where Xi , Yi , i ∈ [1, n] - vectors

Instruction (control) parallelism, strong scaling
Scalar uniprocessor - 2n steps
Two functional units (an adder and a multiplier) - n + 1 steps,
speedup 2n

n+1 ≈ 2
Amdahl’s law:
If s is a fraction of code that is executed serially then speedup
from parallelizing p = 1− s fraction using N processors:

Speedup ≤ 1

s + p/N

Gustafson-Barsis’ law, weak scaling:

Speedup = s + N ∗ (1− s)

Data parallelism: two steps with N processors handling α ∗ X and
Y data slices simultaneously, speedup is proportional to N < n

Parallel Programming: types of parallel computing models

Data parallel - the same instructions are carried out simultaneously on multiple data items (SIMD)

Task parallel - different instructions on different data (MIMD)

MIMD: Message passing (MPI) - overlapping computation and communication (!) , MATLAB Distributed
Computing Server with Parallel Computing Toolbox

SIMD: Array Programming (implicit parallelization), NumPy, High Performance Fortran, Vectorization
(and Tensorization) in Matlab

Task/data parallel paradigms : OpenMP, Fortran 2008 DO CONCURRENT

Hybrid Programming: CPU-GPU, Intel Phi MIC architecture, SIMD→OpenMP→MPI

Basic Linear Algebra Subroutines
Row-major order storage: C/C++, Mathematica, Python, SAS
Column-major order storage: Fortran, MATLAB, R, Julia
Stride: distance in memory between two adjacent elements of a vector or a matrix

BLAS level 1: vector-vector multiplication, α← X ′ ∗ Y , DOT, (LINPACK ’70s)

BLAS level 2: vector-matrix multiplication, Y ← αA ∗ X + βY , GEMV

BLAS level 3: matrix-matrix multiplication, C ← αA ∗ B + βC , GEMM, (LAPACK 80’s)

parallel BLAS: distributed, heterogeneous, hybrid algorithms, block matrix-level

multidimensional array BLAS (?)

Execution time of QR algorithm in percentage of Intel MKL routines on a 12 core machine

Vectors, matrices and tensors

A scalar is n order-0 tensor: X = (x0) ∈ R
A vector is an order-1 tensor: X = (xi) ∈ Rn

A matrix is an order-2 tensor: X = (xi1i2) ∈ Rn1×n2

kth-order tensor: X = (xi1...ik) ∈ Rn1×...×nk

Scalar

Vector

Matrix

Lower-order

Tensor

=

=

=

=

I
1

I
1

I
3

I
1

I
3

X

I
1

I
2

I
3

I
4

X

I
1

I
2

I
3

I
4

X

I
1

I
2

I
3

I
4

X

I
1

I
2

I
3

I
4

I
1

I
2

I
4

I
4

I
2

Vectorization of a tensor/tensorization of a vector

Vectorization (stacking):

X ∈ Rn1×n2×n3 ⇒ vec(X) ∈ Rn1n2n3 ; vec(X) =

x111
x211
x121
x221
x112
x212
x122
x222

Tensorisation:

Basic Tensor Operations: contraction

Tensor contraction

Summation process applied to tensors - a generalization of vector-matrix
and matrix-matrix multiplication

C(i , j , k ,m) =
∑

l

A(i , l , k) ∗ B(l , j ,m)

Order(C) =Order(A)+Order(B)− 2

1 rand (’ s e e d ’ , 1) ;

2 a = rand (2 , 3 , 4) ;

3 b = rand (3 , 5 , 6) ;

4 c = ze ro s (2 , 5 , 4 , 6) ;

5 f o r m =1:6

6 f o r k =1:4

7 c (: , : , k ,m) = a (: , : , k)∗b (: , : ,m) ;

8 end

9 end

10 a (2 , 1 , 3)∗b (1 , 4 , 5)+a (2 , 2 , 3)∗b (2 , 4 , 5)+a (2 , 3 , 3)∗b (3 , 4 , 5)

11 c (2 , 4 , 3 , 5)

12 s i z e (c)

13 2 5 4 6

Basic Tensor Operations: Kronecker product

Kronecker product

Creates tensors whose elements are tensors - a generalization of the outer
vector product, can be used to make block vectors, block matrices

[
a11 a12

a21 a22

]
⊗ B =

[
a11B a12B
a21B a22B

]
Continuous-time Sylvester linear matrix equation (Lyapunov, Ricatti etc):

AX + XB = C ,A ∈ Rn×n,B ∈ Rm×m,C ∈ Rn×m,

Using vec(AXB) = (B> ⊗ A)vec(X) the Sylvester equation can be
rewritten as a standard linear program:

Ax = c , x = vec(X), c = vec(C),A = Im ⊗ A + B> ⊗ In

Non-Linear Moral Hazard Programs: deterministic contract

Unobserved action with observed stochastic output

Action-Output

A⊗Q : {a1, ...ana} ⊗ {q1, ...qnq}

Stochastic Production Function p(q|a)
Compensation Schedule

C(Q) = {c(q1), ..., c(qnq)}

Expected utility for the agents

ω(c , a) =
∑
q∈Q

p(q|a)u(c(q), a)

The non-linear profit-optimal mechanism design problem:

max
c(q),a

∑
q ∈Q

p(q|a) [q − c(q)]

s.t.
Incentive Compatibility Constraints (ICC):

ω(c, a) ≥ ω(c, a), ∀ a ∈ A

Utility Assignment Constraint (UAC):
ω(c, a) = ω

Linear MH Programs: Prescott-Townsend lottery

Choice: π(c , q, a) = π(c |q, a)P(q|a)π(a) - probability distribution,
fraction of agents to receive a particular allocation of {c , q, a}

The linear program for the profit optimal contract:

max
π(c,q,a)

 ∑
C,Q,A

π (c , q, a) [q − c]

s.t.

Mother Nature/Technology Constraints:
∀ {q, a} ∈ Q ×A∑
C π(c, q, a) = P (q|a)

∑
C,Q π(c, q, a)

Incentive Compatibility Constraints (ICC) for action variables:
∀ a, â ∈ A ×A∑
C,Q π (c, q, a) u(c, a) ≥

∑
C,Q π (c, q, a)

P(q,â)
P(q,a)

u(c, â)

Utility Assignment Constraint:∑
Q,C π (c, q, a) u(c, a) = ω

Probability Measure Constraints:∑
Q,C,A π (c, q, a) = 1; 0 ≤ π (c, q, a) ≤ 1, ∀{c, q, a} ∈ C × Q ×A

Lotteries: tensor vectorization, contraction, tensor products, Karaivanov, 2001

C ∈ {c1, c2},Q ∈ {q1, q2},A ∈ {a1, a2}

Probability distribution π (c, q, a)

Technology constraints:

π(c1, q1, a1) + π(c2, q1, a1) = p(q1, a1) ∗ (π(c1, q1, a1) + π(c2, q1, a1) + π(c1, q2, a1) + π(c2, q2, a1))

π(c1, q2, a1) + π(c2, q2, a1) = p(q2, a1) ∗ (π(c1, q1, a1) + π(c2, q1, a1) + π(c1, q2, a1) + π(c2, q2, a1))

π(c1, q1, a2) + π(c2, q1, a2) = p(q1, a2) ∗ (π(c1, q1, a2) + π(c2, q1, a2) + π(c1, q2, a2) + π(c2, q2, a2))

π(c1, q2, a2) + π(c2, q2, a2) = p(q2, a2) ∗ (π(c1, q1, a2) + π(c2, q1, a2) + π(c1, q2, a2) + π(c2, q2, a2))

vec(π(c, q, a))→ Πnc∗nq∗na×1, vec(p(q, a))→ Pnq∗na×1

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

∗

π111
π211
π121
π221
π112
π212
π122
π222

=

P1 P1 P1 P1 0 0 0 0
P2 P2 P2 P2 0 0 0 0
0 0 0 0 P3 P3 P3 P3
0 0 0 0 P4 P4 P4 P4

∗

π111
π211
π121
π221
π112
π212
π122
π222

[

Jna×nq ⊗ I1×nc

]
∗Πnc∗nq∗na×1 =

[(
(Ina×na ⊗ Jnq×1) ◦ (Pnq∗na×1 ∗ I1×na)

)
⊗ I1×nc∗nq

]
∗Πnc∗nq∗na×1

Building block - standard mechanism design problem

from ”Spatial Competition among Financial Service Providers and Optimal Contract Design”, R. Townsend and V. Zhorin (2014)

The optimal contract to maximize the bank surplus extracted from each agent:

S{ω(θ)} :

= max
π(c,q,k,a|θ)

∑
θ

∑
c,q,k,a

π (c, q, k, a|θ) [q − c − k]

where π(c, q, k, a|θ) is a probability distribution over the vector (c, q, k, a) given the agent’s type θ.

Mother Nature/Technology Constraints:

∀
{

q, k, a
}
∈ Q × K × A and ∀ θ ∈ Θ

∑
c

π(c, q, k, a|θ) = P
(

q|k, a, θ
)∑

c,q

π(c, q, k, a|θ)

Incentive Compatibility Constraints for action variables:
∀ a, â ∈ A× A and ∀ k ∈ K and ∀ θ ∈ Θ:

∑
c,q

π (c, q, k, a|θ) u (c, a|θ) ≥
∑
c,q

π (c, q, k, a|θ)
P(q, |k, â, θ)

P(q, |k, a, θ)
u(c, â|θ)

Truth-Telling Conditions in Adverse Selection - type θ must not announce type θ′ (can add to unobserved a and
k):
∀ θ, θ′ ∈ Θ

∑
c,q,k,a

π(c, q, k, a|θ)u(c, a|θ) ≥
∑

c,q,k,a

[
π
(

c, q, k, a|θ′
) P(q, |k, a, θ)

P(q, |k, a, θ′)
u(c, a|θ′)

]

Computing Lottery Programs: tensor vectorization

Discretization: C, Q, and A are finite ordered sets.
Tensor product C ⊗ Q ⊗A → π
MATLAB Kronecker tensor product: KRON(X , Y) = X ⊗ Y

1 g r c = l i n s p a c e (0 . , 4 , 3 0 0) ; %consumpt ion v e c t o r

2 grq =[1 4] ;%output v e c t o r

3 g r a = l i n s p a c e (0 . , 1 , 3 0 0) ; %e f f o r t v e c t o r

4 nc= l eng th (g r c) ; nq=l eng th (grq) ; na=l eng th (g r a) ;

5 %d i m e n s i o n o f l o t t e r y v e c t o r

6 N=na∗nq∗nc ; %=180 ,000

7
8 %p r o d u c t i o n t e c h n o l o g y

9 P (2 : 2 : na∗nq) = g r a ;

10 P (1 : 2 : na∗nq - 1) = 1 - g r a ;

11
12 %t e n s o r i z a t i o n / v e c t o r i z a t i o n

13 C = kron (ones (1 , na∗nq) , g r c) ;

14 Q = kron (kron (ones (1 , na) , grq) , ones (1 , nc)) ;

15 A = kron (gra , ones (1 , nc∗nq)) ;

16
17 %a dd i ng up to one f o r t o t a l p r o b a b i l i t y

18 Aeq 1 = ones (1 ,N) ; beq 1 = 1 ;

19 %s e t u t i l i t y o f f e r

20 omega = 2 . 3 ; s i g = . 5 ; gam = 2 ;

21 Aeq ut = C . ˆ (1 - s i g) /(1 - s i g) - A. ˆ gam ;

22 b e q u t = omega ;

23 %o b j e c t i v e f u n c t i o n

24 Obj = Q - C ;

Computing Lottery Programs: tensor contraction and decomposition

[
Jna×nq ⊗ I1×nc −(
Ina×na⊗Jnq×1◦(Pnq∗na×1∗I1×na)

)
⊗I1×nc∗nq

]
∗Πnc∗nq∗na×1 = 0

1 %t e c h n o l o g y c o n s t r a i n t s

2 Aeq mn = kron (eye (na∗nq) , ones (1 , nc)) - . . .

3 kron (kron (eye (na) , ones (nq , 1)) .∗ (P’∗ ones (1 , na)) , ones (1 , nc∗nq)) ;

4 beq mn = ze ro s (na∗nq , 1) ;

Computing Lottery Programs: calling LP solver

1 A i n e q = [] ; b i n e q = [] ;

2 Aeq = [Aeq 1 ; Aeq ut ; Aeq mn ;] ;

3 beq = [beq 1 ; b e q u t ; beq mn ;] ;

4 %i f use l i n p r o g

5 [x , f v a l , e f l a g , nn , l a] = l i n p r o g (- Obj , A ineq , b i n e q , Aeq , beq , ze ro s (N, 1) , ones (N, 1)) ;

6 Cp = C∗x ; Qp = Q∗x ; Ap = A∗x ;

7 %%

8 Number o f v a r i a b l e s : 180000

9 Number o f l i n e a r i n e q u a l i t y c o n s t r a i n t s : 0

10 Number o f l i n e a r e q u a l i t y c o n s t r a i n t s : 602

11 Number o f l ower bound c o n s t r a i n t s : 180000

12 Number o f upper bound c o n s t r a i n t s : 180000

13 A l g o r i t h m s e l e c t e d l a r g e - s c a l e : i n t e r i o r p o i n t

14 %%

15 [Qp Cp Ap Qp- Cp]

16 3 .8280 2 .5418 0 .9427 1 .2862

17 %MATLAB l i n p r o g on X5460 @ 3 . 1 6 GHz , CPU Mark 4437

18 E l a p s e d t ime i s 26 s e c o n d s .

19 %MATLAB l i n p r o g on E5 - 2670 @ 2 . 6 0 GHz , CPU Mark 12849

20 E l a p s e d t ime i s 10 s e c o n d s .

21 %GUROBI l p s o l v e r on X5460 @ 3 . 1 6 GHz , CPU Mark 4437

22 E l a p s e d t ime i s 2 s e c o n d s .

Utility: c1−σ
1−σ − aθ ⇒ 2.3000

FOC check: θaθ−1 = c−σ(q − q)⇒ 1.8853 ≈ 1.8817

Linear Programming: solvers

MATLAB linprog

Open source: GLPK, lp solve, CLP, SoPlex

IBM CPLEX , XPRESS, Gurobi: interfaces to R, MATLAB, Python

”Comparison of Open-Source Linear Programming Solvers”, Sandia Report, 2013

Endogenous utility distribution: a contract-based model of IO (Townsend-Zhorin, 2014)

Tensor-based contract competition

The agents are distributed uniformly in R1 : [0; 1] with total market mass set to one. The household cost to access
financial services is L ∗ |x − xi |, x is location of the agent, xi is location of bank i , L is a spatial cost or disutility
from accepting a contract. The agents of type θ at location x choose to go to bank i if contract utility from bank i
satisfies participation constraint and the real value offered is better than the one from bank i′

Vdiff = ui (θ)− L ∗ |x − xi |≥ ui ′(θ)− L ∗ |x − xi ′ |≥ û0(θ)

where û0(θ) is autarky value.

can restrict choice by finite number of potential locations (even easier) - but we want to know if
unrestricted competition in space delivers interesting patterns

spatially different agent’s characteristics, all we need to do is to integrate over densities and we have that
already built-in

can do R2, put in roads just like on real maps

MARKET STRUCTURE

collusion (two-branch monopoly)

simultaneous Nash in contracts at fixed location (no commitment)

welfare implications of liberalization

full commitment to location and simultaneous Nash on contracts (partial commitment)

sequential Nash equilibrium (SNE) with full commitment to location and contract (business model)

local informed player vs outside entrant facing adverse selection

Welfare implications of financial liberalization (Townsend-Zhorin, 2014)

real value computed for risky and safe households at all locations

local two-branch monopoly at fixed locations [1/4; 3/4]

at relatively low spatial costs the switch from monopoly to competition increases the household utility, but
with some twists

with full information the biggest gain is for the risky type

with adverse selection it is much harder to distinguish across types, so the overall gain from
liberalization/competition is similar for both types

safe type gains more from liberalization in the adverse selection regime than in the full information regime

at yet higher spatial costs there is no gain for either type

(a) Full Information

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

spatial cost

v
a
lu

e

total household value

competitive risky

competitive safe

monopoly risky

monopoly safe

(b) Adverse Selection

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

spatial cost

v
a
lu

e

total household value

competitive risky

competitive safe

monopoly risky

monopoly safe

HJB PDE for Robust Economic-Climate Models

finite difference for HJB PDE: simple and standard

technique is general and common in optimal robust control
literature

numerical global solution of robust stochastic
climate-economic models in continuous time with optimal
control

allows to do robustness analysis over a range of different
models with unknown drift distortions altering dynamics of
stochastic processes for temperature, damages, productivity,
climate sensitivity

carbon-climate impact with multiplicative component of
uncertainty for the evolution of temperature

Non-linear stochastic HJB PDE with robustness

W (X1, ...,Xl)

= max
C1,...,Cm

min
Λ1,...,Λn

E0

∫ ∞
0

e−ρt

[
u(C1, ...,Cm) +

n∑
k=1

1

2θk
Λ2

k

]
dt

s.t. laws of motion for states ⇐⇒

0 = max
C1,...,Cm

min
Λ1,...,Λn

[
u(C1, ...,Cm) +

n∑
k=1

1

2θk
Λ2

k

+
l∑

i=1

∂W (X1, ...,Xl)

∂Xi
fi (X1, ...,Xl ;C1, ...,Cm; Λ1, ...,Λn)

+
l∑

i=1

∂2W (X1, ...Xl)

∂X 2
i

gi (X1, ...,Xl ;C1, ...,Cm; Λ1, ...,Λn)

+ W (X1, ...,Xl)h(X1, ...Xl ;C1, ...,Cm; Λ1, ...,Λn)

]

Convergent approximation: numerical methods

theory of viscosity solutions by Crandall and Lions (84,92,96)

Barles-Souganidis (91) proof: monotone finite-difference (FD)
method can converge to a well-behaved unique solution of the
fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation with
no explicit boundary conditions

Oberman (06): convergent numerical schemes for PDE are
constructed and implemented

we apply a FD numerical approach to solve Ramsey-type
economic growth models with carbon-climate response (CCR)
and Hansen-Sargent robustness channels

Robust Economic-Climate model: basic formulation

Four state variables: K , logA,T , log λ and four controls. One maximizer:
C , and 3 minimizers: GT ,Ga,Gλ. Value function W (K ,T , logA, log λ; t).
The laws of motion for state variables in continuous time:

dKt = [AtK
α
t − Ct − δKt] dt

d logAt = [µa0 − µaT (Tt − T0)− σaGat] dt + σadB̃1
t

dTt = dT̂t + λtAtK
α
t dt

dT̂t = −σTGTtdt + σTdB̃2
t

d log λt = −κλ(log λt − log λ)dt − σλGλtdt + σλdB̃3
t

Continuous time HJB PDE framework

0 = max
C

min
GT ,Ga,Gλ

[
1

1− γ
C 1−γ +

1

2θ

(
G 2

T + G 2
a + G 2

λ

)
− ρ ∗W

+
∂W

∂K
[AKα − C − δK] +

∂W

∂T
[λAKα − σTGT]

+
∂W

∂ log λ

[
−κλ(log λt − log λ)− σλGλ

]
+

∂W

∂ logA
[µa0 − µaT (T − T0)− σaGa] + ...

]
Controls:

G∗λ(K ,T , logA, log λ) = θσλ
∂W (K ,T , logA, log λ)

∂ log λ

HJB PDE versus discrete-time dynamic programming

optimal consumption feedback in HJB PDE approach:

C∗(K ,T , logA, log λ) =

(
∂W (K ,T , logA, log λ)

∂K

)−1/γ

compare to standard VFI in discrete time DP approach:

βE
∂W (K ′,T ′, logA′, log λ′)

∂K
= [K ′ − AKα − (1− δ)K]

−γ

Efficient discrete-time DP methods: L. Maliar, S. Maliar ”Envelope condition method versus endogenous grid

method for solving dynamic programming problems”, Economics Letters, 2013

...continuous-time approach sidesteps this difficulty completely. In this regard, it shares some
similarities with the ”endogenous grid method” of Carroll (2006). The difference is that in
continuous-time this also works with ”exogenous grids”. Intuitively, discrete time distinguishes
between ”today” and ”tomorrow” but in continuous time, ”tomorrow” is the same thing as
”today”.

from Benjamin Moll et al, ”Heterogeneous Agent Models in Continuous Time”, 2014

Finite-differencing schemes and numerical solutions

stable upwind schemes

dimension-adaptive tensor products

six continuous states, ≈ 500 million points for the PDE grid

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Temperature distortion

temperature anomaly
1 1.5 2 2.5 3

0.025

0.03

0.035

0.04

0.045
Productivity distortion

productivity

0.01 0.015 0.02 0.025 0.03
−0.025

−0.02

−0.015

−0.01

−0.005
Lambda distortion

lambda
0 5 10 15 20

0

0.5

1

1.5

2

2.5
Consumption

capital

Tensors in discretized partial differential equations

A separable second-order differential operator L:

L = L(1) + L(2) + L(3), L(1) =
∂

∂xi
ai (xi)

∂

∂xi
+ bi (xi)

∂

∂xi
+ ci (xi)

when discretized on grid

Gn1×n2×n3 =

{
i

n1
,
j

n2
,
k

n3
: 0 ≤ i , j , k ≤ 1

}
can be written using Kronecker product:

L = L(1)⊗In2×n2⊗In3×n3 +In1×n1⊗L(2)⊗In3×n3 +In1×n1⊗In2×n2⊗L(3)

Finite difference for vectorized tensors

vec(L) = V+
j (:)− V−j (:)

Tensor rank and tensor decomposition
C. J. Hillar and L.-H. Lim, ”Most tensor problems are NP-hard,” J. ACM, 60 (2013)

rank(A) = min

{
r : A =

r∑
i=1

λixi ⊗ yi ⊗ zi

}
A ∈ Rl×m×n,X ∈ Rl ,Y ∈ Rm,Z ∈ Rn

Tensor networks and quantum entanglement

U. Schollwök, ”The density-matrix renormalization group in the age of
matrix product states,” Annals of Physics, 2011

Φ = ⊗d
i=1ψi

Gaussian elimination for low-rank tensor decomposition, H-matrices

Given a d-dimensional tensor, find an approximation by tensor
decomposition

f (x1, ..., xd) ≈
r∑

k=1

f k
1 (x1) . . . f k

d (xd)

Chebyshev functions in 2D, global well-conditioned spectral methods

Given Chebyshev interpolation nodes zk

zk = −cos
(

2k − 1

2m
π

)
and Chebychev coefficients aij , i , j = 0, . . . , n computed on Chebychev
nodes we can approximate

p(x , y) =
n∑

i=0

n∑
j=0

aijTi

(
2
x − a

b − a
− 1

)
Tj

(
2
y − c

d − c
− 1

)
Chebfun is freely-available open-source software for MATLAB for computing using Chebyshev technology.
http://www.chebfun.org

”As we enter an era of parallel computing, with the rules of
the game changing fast, it is intriguing that so many
fundamental issues remain unsettled in the game we have been
playing for decades.”

L. Trefethen, ”Three mysteries of Gaussian elimination”, 1985

http://www.chebfun.org

