Tensor-Based Computing in Contract Theory, IO, and HJB PDE Macro Models

Victor V. Zhorin
Computation Institute

April 16, 2015

Based on

- Edward C. Prescott and Robert Townsend, "Pareto Optima and Competitive Equilibria with Adverse Selection and Moral Hazard", Econometrica, 1984
- Alexander Karaivanov and Robert Townsend, "Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes", Econometrica, 2014
- Robert Townsend and Victor Zhorin, "Spatial Competition among Financial Service Providers and Optimal Contract Design", 2014
- Benjamin Moll
(http://www.princeton.edu/~moll/HACTproject.htm): "Heterogeneous Agent Models in Continuous Time" (with Yves Achdou, Jean-Michel Lasry and Pierre-Louis Lions)
- Wolfgang Hackbusch, "Tensor Spaces and Numerical Tensor Calculus", 2012

Key points

- Computers are well-designed and heavily optimized to handle vectorand matrix-based calculations for medium- and large-size problems
- Numerical linear algebra libraries are well-developed and fast
- Tensor-related (multi-dimensional, multivariate) problems are common, highly complex and difficult (often considered impossible/infeasible/intractable) to compute
- Very large-size data intensive processing is typically required, scalability is an issue
- Focus on numerical tensor analysis techniques that are readily available and generally applicable
- The goal is to enable efficient high-performance computations for economic models explicitly formulated in tensor format

Tensor-related problems in economics

- Multivariate statistics and multi-dimensional structural estimations
- Prescott-Townsend linear programming approach for information-constrained non-linear contract models
- Industrial Organization with heterogeneous types and multi-dimensional characteristics
- Stochastic Partial Differential Equation (SPDE) models in macroeconomics and finance
- Also: Hidden Markov Models, big data analysis, belief propagation, global non-convex optimization problems, approximation and interpolation of multivariate functions

Speedup: Algorithms vs. Machine improvement

R. E. Bixby, "A Brief History of Linear and Mixed-Integer Programming Computation", Documenta Math., 2012 CPLEX LP code from 1988 through 2002

- Algorithmic improvement (machine independent) Best of barrier, primal simplex, and dual simplex: 3300x
- Machine improvement: 1600x

Total: 5,280,000x
5 months of computing $\rightarrow \approx 1.1$ hour (due to better algorithms) $\rightarrow \approx 2.5$ seconds (machine+algorithms)

Parallel Programming:

same task done faster or more complex task done in feasible time

SAXPY, single-precision real Alpha X Plus Y (BLAS, level 1):

$$
Y \leftarrow \alpha * X+Y
$$

where $X_{i}, Y_{i}, i \in[1, n]$ - vectors

- Instruction (control) parallelism, strong scaling
- Scalar uniprocessor - $2 n$ steps
- Two functional units (an adder and a multiplier) - $n+1$ steps, speedup $\frac{2 n}{n+1} \approx 2$
- Amdahl's law:

If s is a fraction of code that is executed serially then speedup from parallelizing $p=1-s$ fraction using N processors:

$$
\text { Speedup } \leq \frac{1}{s+p / N}
$$

- Gustafson-Barsis' law, weak scaling:

$$
\text { Speedup }=s+N *(1-s)
$$

- Data parallelism: two steps with N processors handling $\alpha * X$ and Y data slices simultaneously, speedup is proportional to $N<n$

- Data parallel - the same instructions are carried out simultaneously on multiple data items (SIMD)
- Task parallel - different instructions on different data (MIMD)
- MIMD: Message passing (MPI) - overlapping computation and communication (!) , MATLAB Distributed Computing Server with Parallel Computing Toolbox
- SIMD: Array Programming (implicit parallelization), NumPy, High Performance Fortran, Vectorization (and Tensorization) in Matlab
- Task/data parallel paradigms: OpenMP, Fortran 2008 DO CONCURRENT
- Hybrid Programming: CPU-GPU, Intel Phi MIC architecture, SIMD \rightarrow OpenMP \rightarrow MPI

Basic Linear Algebra Subroutines

Row-major order storage: $\mathrm{C} / \mathrm{C}++$, Mathematica, Python, SAS
Column-major order storage: Fortran, MATLAB, R, Julia
Stride: distance in memory between two adjacent elements of a vector or a matrix

- BLAS level 1: vector-vector multiplication, $\alpha \leftarrow X^{\prime} * Y$, DOT, (LINPACK '70s)
- BLAS level 2: vector-matrix multiplication, $Y \leftarrow \alpha A * X+\beta Y$, GEMV
- BLAS level 3: matrix-matrix multiplication, $C \leftarrow \alpha A * B+\beta C$, GEMM, (LAPACK 80's)
- parallel BLAS: distributed, heterogeneous, hybrid algorithms, block matrix-level
- multidimensional array BLAS (?)

Execution time of QR algorithm in percentage of Intel MKL routines on a 12 core machine

- A scalar is n order- 0 tensor: $\mathcal{X}=\left(x_{0}\right) \in \mathbb{R}$
- A vector is an order- 1 tensor: $\mathcal{X}=\left(x_{i}\right) \in \mathbb{R}^{n}$
- A matrix is an order- 2 tensor: $\mathcal{X}=\left(x_{i_{1} i_{2}}\right) \in \mathbb{R}^{n_{1} \times n_{2}}$
- kth-order tensor: $\mathcal{X}=\left(x_{i_{1} \ldots i_{k}}\right) \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$

Vectorization of a tensor/tensorization of a vector

Vectorization (stacking):

$$
\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \Rightarrow \operatorname{vec}(X) \in R^{n_{1} n_{2} n_{3}} ; \operatorname{vec}(X)=\left[\begin{array}{c}
x_{111} \\
x_{211} \\
x_{121} \\
x_{221} \\
x_{112} \\
x_{212} \\
x_{122} \\
x_{222}
\end{array}\right]
$$

Tensorisation:

Basic Tensor Operations: contraction

Tensor contraction

Summation process applied to tensors - a generalization of vector-matrix and matrix-matrix multiplication

$$
\mathcal{C}(i, j, k, m)=\sum_{I} \mathcal{A}(i, l, k) * \mathcal{B}(I, j, m)
$$

$\operatorname{Order}(\mathcal{C})=\operatorname{Order}(\mathcal{A})+\operatorname{Order}(\mathcal{B})-2$

```
rand('seed', 1);
\(a=\operatorname{rand}(2,3,4)\);
\(b=\operatorname{rand}(3,5,6) ;\)
\(c=\operatorname{zeros}(2,5,4,6)\);
for \(m=1: 6\)
    for \(k=1: 4\)
        \(c(:,:, k, m)=a(:,:, k) * b(:,:, m) ;\)
    end
end
\(a(2,1,3) * b(1,4,5)+a(2,2,3) * b(2,4,5)+a(2,3,3) * b(3,4,5)\)
c ( \(2,4,3,5\) )
size(c)
\(\begin{array}{llll}2 & 5 & 4 & 6\end{array}\)
```


Basic Tensor Operations: Kronecker product

Kronecker product
Creates tensors whose elements are tensors - a generalization of the outer vector product, can be used to make block vectors, block matrices

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \otimes B=\left[\begin{array}{l|l}
a_{11} B & a_{12} B \\
\hline a_{21} B & a_{22} B
\end{array}\right]
$$

Continuous-time Sylvester linear matrix equation (Lyapunov, Ricatti etc):

$$
A X+X B=C, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, C \in \mathbb{R}^{n \times m},
$$

Using $\operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$ the Sylvester equation can be rewritten as a standard linear program:

$$
\mathcal{A} x=c, x=\operatorname{vec}(X), c=\operatorname{vec}(C), \mathcal{A}=\mathcal{I}_{m} \otimes A+B^{\top} \otimes \mathcal{I}_{n}
$$

Non-Linear Moral Hazard Programs: deterministic contract
Unobserved action with observed stochastic output
Action-Output

$$
\mathcal{A} \otimes \mathcal{Q}:\left\{a_{1}, \ldots a_{n_{a}}\right\} \otimes\left\{q_{1}, \ldots q_{n_{q}}\right\}
$$

Stochastic Production Function $p(q \mid a)$
Compensation Schedule

$$
\mathcal{C}(\mathcal{Q})=\left\{c\left(q_{1}\right), \ldots, c\left(q_{n_{q}}\right)\right\}
$$

Expected utility for the agents

$$
\omega(c, a)=\sum_{q \in \mathcal{Q}} p(q \mid a) u(c(q), a)
$$

The non-linear profit-optimal mechanism design problem:

$$
\max _{c(q), a} \sum_{q \in \mathcal{Q}} p(q \mid a)[q-c(q)]
$$

s.t.

Incentive Compatibility Constraints (ICC):

$$
\omega(c, a) \geq \omega(c, \bar{a}), \forall \bar{a} \in \mathcal{A}
$$

Utility Assignment Constraint (UAC):

$$
\omega(c, a)=\bar{\omega}
$$

Choice: $\pi(c, q, a)=\pi(c \mid q, a) P(q \mid a) \pi(a)$ - probability distribution, fraction of agents to receive a particular allocation of $\{c, q, a\}$

The linear program for the profit optimal contract:

$$
\max _{\pi(c, q, a)}\left[\sum_{\mathcal{C}, \mathcal{Q}, \mathcal{A}} \pi(c, q, a)[q-c]\right]
$$

s.t.

> Mother Nature/Technology Constraints:
> $\forall\{\bar{q}, \bar{a}\} \in \mathcal{Q} \times \mathcal{A}$
> $\sum_{\mathcal{C}} \pi(c, \bar{q}, \bar{a})=P(\bar{q} \mid \bar{a}) \sum_{\mathcal{C}, \mathcal{Q}} \pi(c, q, \bar{a})$

Incentive Compatibility Constraints (ICC) for action variables:
$\forall a, \hat{a} \in \mathcal{A} \times \mathcal{A}$
$\sum_{\mathcal{C}, \mathcal{Q}} \pi(c, q, a) u(c, a) \geq \sum_{\mathcal{C}, \mathcal{Q}} \pi(c, q, a) \frac{P(q, \hat{a})}{P(q, a)} u(c, \hat{a})$
Utility Assignment Constraint:
$\sum_{\mathcal{Q}, \mathcal{C}} \pi(c, q, a) u(c, a)=\bar{\omega}$
Probability Measure Constraints:
$\sum_{\mathcal{Q}, \mathcal{C}, \mathcal{A}} \pi(c, q, a)=1 ; 0 \leq \pi(c, q, a) \leq 1, \forall\{c, q, a\} \in \mathcal{C} \times \mathcal{Q} \times \mathcal{A}$
$\mathcal{C} \in\left\{c_{1}, c_{2}\right\}, \mathcal{Q} \in\left\{q_{1}, q_{2}\right\}, \mathcal{A} \in\left\{a_{1}, a_{2}\right\}$
Probability distribution $\pi(c, q, a)$
Technology constraints:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\pi\left(c_{1}, q_{1}, a_{1}\right)+\pi\left(c_{2}, q_{1}, a_{1}\right)=p\left(q_{1}, a_{1}\right) *\left(\pi\left(c_{1}, q_{1}, a_{1}\right)+\pi\left(c_{2}, q_{1}, a_{1}\right)+\pi\left(c_{1}, q_{2}, a_{1}\right)+\pi\left(c_{2}, q_{2}, a_{1}\right)\right) \\
\pi\left(c_{1}, q_{2}, a_{1}\right)+\pi\left(c_{2}, q_{2}, a_{1}\right)=p\left(q_{2}, a_{1}\right) *\left(\pi\left(c_{1}, q_{1}, a_{1}\right)+\pi\left(c_{2}, q_{1}, a_{1}\right)+\pi\left(c_{1}, q_{2}, a_{1}\right)+\pi\left(c_{2}, q_{2}, a_{1}\right)\right) \\
\pi\left(c_{1}, q_{1}, a_{2}\right)+\pi\left(c_{2}, q_{1}, a_{2}\right)=p\left(q_{1}, a_{2}\right) *\left(\pi\left(c_{1}, q_{1}, a_{2}\right)+\pi\left(c_{2}, q_{1}, a_{2}\right)+\pi\left(c_{1}, q_{2}, a_{2}\right)+\pi\left(c_{2}, q_{2}, a_{2}\right)\right) \\
\pi\left(c_{1}, q_{2}, a_{2}\right)+\pi\left(c_{2}, q_{2}, a_{2}\right)=p\left(q_{2}, a_{2}\right) *\left(\pi\left(c_{1}, q_{1}, a_{2}\right)+\pi\left(c_{2}, q_{1}, a_{2}\right)+\pi\left(c_{1}, q_{2}, a_{2}\right)+\pi\left(c_{2}, q_{2}, a_{2}\right)\right)
\end{array}\right. \\
& \operatorname{vec}(\pi(c, q, a)) \rightarrow \Pi_{n_{c} * n_{q} * n_{a} \times 1}, \operatorname{vec}(p(q, a)) \rightarrow P_{n_{q} * n_{a} \times 1}
\end{aligned}
$$

$$
\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] *\left[\begin{array}{l}
\pi_{111} \\
\pi_{211} \\
\pi_{121} \\
\pi_{221} \\
\pi_{112} \\
\pi_{212} \\
\pi_{122} \\
\pi_{222}
\end{array}\right]=\left[\begin{array}{cccccccc}
P_{1} & P_{1} & P_{1} & P_{1} & 0 & 0 & 0 & 0 \\
P_{2} & P_{2} & P_{2} & P_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & P_{3} & P_{3} & P_{3} & P_{3} \\
0 & 0 & 0 & 0 & P_{4} & P_{4} & P_{4} & P_{4}
\end{array}\right] *\left[\begin{array}{l}
\pi_{111} \\
\pi_{211} \\
\pi_{121} \\
\pi_{221} \\
\pi_{112} \\
\pi_{212} \\
\pi_{122} \\
\pi_{222}
\end{array}\right]
$$

$$
\left[J_{n_{a} \times n_{q}} \otimes I_{1 \times n_{c}}\right] * \Pi_{n_{c} * n_{q} * n_{a} \times 1}=\left[\left(\left(I_{n_{a} \times n_{a}} \otimes J_{n_{q} \times 1}\right) \circ\left(P_{n_{q} * n_{a} \times 1} * I_{1 \times n_{a}}\right)\right) \otimes I_{1 \times n_{c} * n_{q}}\right] * \Pi_{n_{c} * n_{q} * n_{a} \times 1}
$$

Building block - standard mechanism design problem

from "Spatial Competition among Financial Service Providers and Optimal Contract Design", R. Townsend and V. Zhorin (2014)
The optimal contract to maximize the bank surplus extracted from each agent:

$$
\begin{aligned}
S\{\overline{\omega(\theta)}\} & : \\
& =\max _{\pi(c, q, k, a \mid \theta)}\left[\sum_{\theta} \sum_{c, q, k, a} \pi(c, q, k, a \mid \theta)[q-c-k]\right]
\end{aligned}
$$

where $\pi(c, q, k, a \mid \theta)$ is a probability distribution over the vector (c, q, k, a) given the agent's type θ.
Mother Nature/Technology Constraints:
$\forall\{\bar{q}, \bar{k}, \bar{a}\} \in Q \times K \times A$ and $\forall \theta \in \Theta$

$$
\sum_{c} \pi(c, \bar{q}, \bar{k}, \bar{a} \mid \theta)=P(\bar{q} \mid \bar{k}, \bar{a}, \theta) \sum_{c, q} \pi(c, q, \bar{k}, \bar{a} \mid \theta)
$$

Incentive Compatibility Constraints for action variables:
$\forall a, a \hat{a} \in A \times A$ and $\forall k \in K$ and $\forall \theta \in \Theta$:

$$
\sum_{c, q} \pi(c, q, k, a \mid \theta) u(c, a \mid \theta) \geq \sum_{c, q} \pi(c, q, k, a \mid \theta) \frac{P(q, \mid k, \hat{a}, \theta)}{P(q, \mid k, a, \theta)} u(c, \hat{a} \mid \theta)
$$

Truth-Telling Conditions in Adverse Selection - type θ must not announce type θ^{\prime} (can add to unobserved a and k):
$\forall \theta, \theta^{\prime} \in \Theta$

$$
\sum_{c, q, k, a} \pi(c, q, k, a \mid \theta) u(c, a \mid \theta) \geq \sum_{c, q, k, a}\left[\pi\left(c, q, k, a \mid \theta^{\prime}\right) \frac{P(q, \mid k, a, \theta)}{P\left(q, \mid k, a, \theta^{\prime}\right)} u\left(c, a \mid \theta^{\prime}\right)\right]
$$

Computing Lottery Programs: tensor vectorization

- Discretization: \mathcal{C}, \mathcal{Q}, and \mathcal{A} are finite ordered sets.
- Tensor product $\mathcal{C} \otimes \mathcal{Q} \otimes \mathcal{A} \rightarrow \pi$
- MATLAB Kronecker tensor product: $K R O N(X, Y)=X \otimes Y$

```
grc = linspace(0.,4,300); %consumption vector
grq =[\begin{array}{ll}{1}&{4}\end{array}];%output vector
gra = linspace(0.,1,300); %effort vector
nc= length(grc); nq=length(grq); na=length(gra);
%dimension of lottery vector
N=na*nq*nc; %=180,000
%production technology
P(2:2:na*nq) = gra;
P(1:2:na*nq-1) = 1-gra;
%tensorization/vectorization
C = kron(ones(1,na*nq),grc);
Q = kron(kron(ones(1,na),grq),ones(1,nc));
A = kron(gra,ones(1,nc*nq));
%adding up to one for total probability
Aeq_1 = ones(1,N); beq_1 = 1;
%set utility offer
omega = 2.3; sig = .5; gam = 2;
Aeq_ut = C.^(1-sig)/(1-sig) - A.^gam;
beq_ut = omega;
%objective function
Obj = Q - C;
```


Computing Lottery Programs: tensor contraction and decomposition

$$
\begin{aligned}
& {\left[J_{n_{\mathrm{a}} \times n_{q}} \otimes I_{1 \times n_{c}}-\right.} \\
& \left.\quad\left(I_{n_{\mathrm{a}} \times n_{\mathrm{a}}} \otimes J_{n_{q} \times 1} \circ\left(P_{n_{q} * n_{\mathrm{a}} \times 1} * I_{1 \times n_{\mathrm{a}}}\right)\right) \otimes I_{1 \times n_{c} * n_{q}}\right] * \Pi_{n_{c} * n_{q} * n_{\mathrm{a}} \times 1}=0
\end{aligned}
$$

```
\%technology constraints
2 Aeq_mn \(=\operatorname{kron}(\) eye \((n a * n q)\), ones \((1, n c))-\ldots\)
kron (kron (eye (na), ones (nq, 1)) .*( \(P^{\prime} *\) ones (1, na) ), ones (1, nc*nq)) ;
beq_mn \(=\operatorname{zeros}(\mathrm{na} * \mathrm{nq}, 1)\);
```


Computing Lottery Programs: calling LP solver

```
A_ineq = []; b_ineq = [];
Aeq = [Aeq_1;Aeq_ut;Aeq_mn;];
beq = [beq_1;beq_ut;beq_mn;];
%if use linprog
[x,fval,eflag,nn,la] = linprog(-Obj, A_ineq,b_ineq, Aeq,beq, zeros(N,1) ,ones(N,1));
Cp}=\textrm{C}*x;\quad\textrm{Qp}=\textrm{Q}*\textrm{x};\quad\textrm{Ap}=\textrm{A}*x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Number of variables: 180000
    Number of linear inequality constraints: 0
10 Number of linear equality constraints: 602
11 Number of lower bound constraints: 180000
12 Number of upper bound constraints: 180000
13| Algorithm selected large-scale: interior point
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 [Qp Cp Ap Qp-Cp]
16
17| %MATLAB linprog on X5460 @ 3.16GHz, CPU Mark 4437
18| Elapsed time is 26 seconds.
19|%MATLAB linprog on E5-2670 @ 2.60GHz, CPU Mark 12849
20 Elapsed time is }10\mathrm{ seconds
21|%GUROBI Ip solver on X5460 @ 3.16GHz, CPU Mark 4437
22
Elapsed time is 2 seconds.
```

Utility: $\frac{c^{1-\sigma}}{1-\sigma}-a^{\theta} \Rightarrow 2.3000$
FOC check: $\theta a^{\theta-1}=c^{-\sigma}(\bar{q}-\underline{q}) \Rightarrow 1.8853 \approx 1.8817$

Linear Programming: solvers

- MATLAB linprog
- Open source: GLPK, Ip_solve, CLP, SoPlex
- IBM CPLEX, XPRESS, Gurobi: interfaces to R, MATLAB, Python

Solution Time vs. Number of Constraints for Each Solver

Number of Constraints
"Comparison of Open-Source Linear Programming Solvers", Sandia Report, 2013

Endogenous utility distribution:

Tensor-based contract competition

The agents are distributed uniformly in $\mathbb{R}^{1}:[0 ; 1]$ with total market mass set to one. The household cost to access financial services is $\bar{L} *\left|x-x_{i}\right|, x$ is location of the agent, x_{i} is location of bank i, \bar{L} is a spatial cost or disutility from accepting a contract. The agents of type θ at location x choose to go to bank i if contract utility from bank i satisfies participation constraint and the real value offered is better than the one from bank i^{\prime}

$$
V_{\text {diff }}=u_{i}(\theta)-\bar{L} *\left|x-x_{i}\right| \geq u_{i^{\prime}}(\theta)-\bar{L} *\left|x-x_{i^{\prime}}\right| \geq \hat{u}_{0}(\theta)
$$

where $\hat{u_{0}}(\theta)$ is autarky value.
can restrict choice by finite number of potential locations (even easier) - but we want to know if unrestricted competition in space delivers interesting patterns
spatially different agent's characteristics, all we need to do is to integrate over densities and we have that already built-in
can do \mathbb{R}^{2}, put in roads just like on real maps

MARKET STRUCTURE

collusion (two-branch monopoly)
simultaneous Nash in contracts at fixed location (no commitment)
welfare implications of liberalization
full commitment to location and simultaneous Nash on contracts (partial commitment)
sequential Nash equilibrium (SNE) with full commitment to location and contract (business model)
local informed player vs outside entrant facing adverse selection

- real value computed for risky and safe households at all locations
- local two-branch monopoly at fixed locations [1/4; 3/4]
- at relatively low spatial costs the switch from monopoly to competition increases the household utility, but with some twists
- with full information the biggest gain is for the risky type
- with adverse selection it is much harder to distinguish across types, so the overall gain from liberalization/competition is similar for both types
- safe type gains more from liberalization in the adverse selection regime than in the full information regime
- at yet higher spatial costs there is no gain for either type
(a) Full Information

(b) Adverse Selection

HJB PDE for Robust Economic-Climate Models

- finite difference for HJB PDE: simple and standard
- technique is general and common in optimal robust control literature
- numerical global solution of robust stochastic climate-economic models in continuous time with optimal control
- allows to do robustness analysis over a range of different models with unknown drift distortions altering dynamics of stochastic processes for temperature, damages, productivity, climate sensitivity
- carbon-climate impact with multiplicative component of uncertainty for the evolution of temperature

Non-linear stochastic HJB PDE with robustness

$$
\begin{aligned}
& W\left(X_{1}, \ldots, X_{l}\right) \\
& =\max _{C_{1}, \ldots, C_{m} \Lambda_{1}, \ldots, \Lambda_{n}} \min _{0} \int_{0}^{\infty} e^{-\rho t}\left[u\left(C_{1}, \ldots, C_{m}\right)+\sum_{k=1}^{n} \frac{1}{2 \theta_{k}} \Lambda_{k}^{2}\right] d t
\end{aligned}
$$

s.t. laws of motion for states

$$
\begin{aligned}
0=\max _{C_{1}, \ldots, C_{m} \Lambda_{1}, \ldots, \Lambda_{n}} & \min _{n}\left[u\left(C_{1}, \ldots, C_{m}\right)+\sum_{k=1}^{n} \frac{1}{2 \theta_{k}} \Lambda_{k}^{2}\right. \\
& +\sum_{i=1}^{l} \frac{\partial W\left(X_{1}, \ldots, X_{l}\right)}{\partial X_{i}} f_{i}\left(X_{1}, \ldots, X_{l} ; C_{1}, \ldots, C_{m} ; \Lambda_{1}, \ldots, \Lambda_{n}\right) \\
& +\sum_{i=1}^{l} \frac{\partial^{2} W\left(X_{1}, \ldots X_{l}\right)}{\partial X_{i}^{2}} g_{i}\left(X_{1}, \ldots, X_{l} ; C_{1}, \ldots, C_{m} ; \Lambda_{1}, \ldots, \Lambda_{n}\right) \\
& \left.+W\left(X_{1}, \ldots, X_{l}\right) h\left(X_{1}, \ldots X_{l} ; C_{1}, \ldots, C_{m} ; \Lambda_{1}, \ldots, \Lambda_{n}\right)\right]
\end{aligned}
$$

Convergent approximation: numerical methods

- theory of viscosity solutions by Crandall and Lions $(84,92,96)$
- Barles-Souganidis (91) proof: monotone finite-difference (FD) method can converge to a well-behaved unique solution of the fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation with no explicit boundary conditions
- Oberman (06): convergent numerical schemes for PDE are constructed and implemented
- we apply a FD numerical approach to solve Ramsey-type economic growth models with carbon-climate response (CCR) and Hansen-Sargent robustness channels

Robust Economic-Climate model: basic formulation

Four state variables: $K, \log A, T, \log \lambda$ and four controls. One maximizer: C, and 3 minimizers: $G_{T}, G_{a}, G_{\lambda}$. Value function $W(K, T, \log A, \log \lambda ; t)$. The laws of motion for state variables in continuous time:

$$
\begin{gathered}
d K_{t}=\left[A_{t} K_{t}^{\alpha}-C_{t}-\delta K_{t}\right] d t \\
d \log A_{t}=\left[\mu_{\mathrm{a} 0}-\mu_{\mathrm{a} T}\left(T_{t}-T_{0}\right)-\sigma_{\mathrm{a}} G_{\mathrm{at}}\right] d t+\sigma_{a} d \tilde{B_{t}^{1}} \\
d T_{t}=d \hat{T}_{t}+\lambda_{t} A_{t} K_{t}^{\alpha} d t \\
d \hat{T}_{t}=-\sigma_{T} G_{T t} d t+\sigma_{T} d \tilde{B}_{t}^{2} \\
d \log \lambda_{t}=-\kappa_{\lambda}\left(\log \lambda_{t}-\log \bar{\lambda}\right) d t-\sigma_{\lambda} G_{\lambda t} d t+\sigma_{\lambda} d \tilde{B}_{t}^{3}
\end{gathered}
$$

Continuous time HJB PDE framework

$$
\begin{aligned}
& \begin{aligned}
0=\max _{C} \min _{G_{T}, G_{a}, G_{\lambda}}[& \frac{1}{1-\gamma} C^{1-\gamma}+\frac{1}{2 \theta}\left(G_{T}^{2}+G_{a}^{2}+G_{\lambda}^{2}\right)-\rho * W \\
& +\frac{\partial W}{\partial K}\left[A K^{\alpha}-C-\delta K\right]+\frac{\partial W}{\partial T}\left[\lambda A K^{\alpha}-\sigma_{T} G_{T}\right]
\end{aligned} \\
& +\frac{\partial W}{\partial \log \lambda}\left[-\kappa_{\lambda}\left(\log \lambda_{t}-\log \bar{\lambda}\right)-\sigma_{\lambda} G_{\lambda}\right] \\
& \left.+\frac{\partial W}{\partial \log A}\left[\mu_{a 0}-\mu_{a} T\left(T-T_{0}\right)-\sigma_{a} G_{a}\right]+\ldots\right]
\end{aligned}
$$

Controls:

$$
G_{\lambda}^{*}(K, T, \log A, \log \lambda)=\theta \sigma_{\lambda} \frac{\partial W(K, T, \log A, \log \lambda)}{\partial \log \lambda}
$$

HJB PDE versus discrete-time dynamic programming

optimal consumption feedback in HJB PDE approach:

$$
C^{*}(K, T, \log A, \log \lambda)=\left(\frac{\partial W(K, T, \log A, \log \lambda)}{\partial K}\right)^{-1 / \gamma}
$$

compare to standard VFI in discrete time DP approach:

$$
\beta \mathbb{E} \frac{\partial W\left(K^{\prime}, T^{\prime}, \log A^{\prime}, \log \lambda^{\prime}\right)}{\partial K}=\left[K^{\prime}-A K^{\alpha}-(1-\delta) K\right]^{-\gamma}
$$

Efficient discrete-time DP methods: L. Maliar, S. Maliar "Envelope condition method versus endogenous grid method for solving dynamic programming problems", Economics Letters, 2013

> ...continuous-time approach sidesteps this difficulty completely. In this regard, it shares some similarities with the "endogenous grid method" of Carroll (2006). The difference is that in continuous-time this also works with "exogenous grids". Intuitively, discrete time distinguishes between "today" and "tomorrow" but in continuous time, "tomorrow" is the same thing as "today".

Finite-differencing schemes and numerical solutions

stable upwind schemes
dimension-adaptive tensor products
six continuous states, ≈ 500 million points for the PDE grid

Tensors in discretized partial differential equations

A separable second-order differential operator \mathcal{L} :

$$
\mathcal{L}=L^{(1)}+L^{(2)}+L^{(3)}, L^{(1)}=\frac{\partial}{\partial x_{i}} a_{i}\left(x_{i}\right) \frac{\partial}{\partial x_{i}}+b_{i}\left(x_{i}\right) \frac{\partial}{\partial x_{i}}+c_{i}\left(x_{i}\right)
$$

when discretized on grid

$$
G_{n_{1} \times n_{2} \times n_{3}}=\left\{\frac{i}{n_{1}}, \frac{j}{n_{2}}, \frac{k}{n_{3}}: 0 \leq i, j, k \leq 1\right\}
$$

can be written using Kronecker product:
$\mathcal{L}=L^{(1)} \otimes I_{n_{2} \times n_{2}} \otimes I_{n_{3} \times n_{3}}+I_{n_{1} \times n_{1}} \otimes L^{(2)} \otimes I_{n_{3} \times n_{3}}+I_{n_{1} \times n_{1}} \otimes I_{n_{2} \times n_{2}} \otimes L$
Finite difference for vectorized tensors

$$
\operatorname{vec}(\mathcal{L})=\mathcal{V}_{j}^{+}(:)-\mathcal{V}_{j}^{-}(:)
$$

Tensor rank and tensor decomposition

C. J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard," J. ACM, 60 (2013)

Table I. Tractability of Tensor Problems

Problem	Complexity
Bivariate Matrix Functions over \mathbb{R}, \mathbb{C}	Undecidable (Proposition 12.2)
Bilinear System over \mathbb{R}, \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over \mathbb{R}	NP-hard (Theorem 1.3)
Approximating Eigenvector over \mathbb{R}	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation over \mathbb{R}	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation over \mathbb{R}	NP-hard (Theorem 10.2)
Rank over \mathbb{R} or \mathbb{C}	NP-hard (Theorem 8.2)

$$
\operatorname{rank}(\mathcal{A})=\min \left\{r: \mathcal{A}=\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

$\mathcal{A} \in \mathbb{R}^{\prime \times m \times n}, \mathcal{X} \in \mathbb{R}^{\prime}, \mathcal{Y} \in \mathbb{R}^{m}, \mathcal{Z} \in \mathbb{R}^{n}$
U. Schollwök, "The density-matrix renormalization group in the age of matrix product states," Annals of Physics, 2011

$$
\Phi=\otimes_{i=1}^{d} \psi_{i}
$$

(A)

(B)

(C)

Given a d-dimensional tensor, find an approximation by tensor decomposition

$$
f\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{k=1}^{r} f_{1}^{k}\left(x_{1}\right) \ldots f_{d}^{k}\left(x_{d}\right)
$$

Chebyshev functions in 2D, global well-conditioned spectral methods
Given Chebyshev interpolation nodes z_{k}

$$
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right)
$$

and Chebychev coefficients $a_{i j}, i, j=0, \ldots, n$ computed on Chebychev nodes we can approximate

$$
p(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i j} T_{i}\left(2 \frac{x-a}{b-a}-1\right) T_{j}\left(2 \frac{y-c}{d-c}-1\right)
$$

Chebfun is freely-available open-source software for MATLAB for computing using Chebyshev technology. http://www.chebfun.org
"As we enter an era of parallel computing, with the rules of the game changing fast, it is intriguing that so many fundamental issues remain unsettled in the game we have been playing for decades."
L. Trefethen, "Three mysteries of Gaussian elimination", 1985

