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What We Do

well studied: discrete-time dynamic programming methods
alternative: small-noise expansion in state space

new: numerical solution of robust stochastic macroeconomic
models in continuous time with optimal control

benefits: simpler computational procedure; technique is very
general, allows robustness analysis over variety of
fundamentally different models

open issues: existence and uniqueness; better numerical
methods for computing
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General formulation: non-linear max-min

HJB PDE
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General formulation: optimal controls and
minimizers

Controls (maximizers)
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Convergent approximation: numerical
methods

theory of viscosity solutions by Crandall and Lions (84,92,96)

Barles-Souganidis (91) proof: monotone finite-difference (FD)
method can converge to a well-behaved unique solution of the
fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation with
no explicit boundary conditions

Oberman (06): Convergent numerical schemes for PDE are
constructed and implemented

we apply a FD numerical approach to solve Ramsey-type
economic growth models with carbon-climate response (CCR)
and Hansen-Sargent robustness channels
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Hennlock's two-sector model: HJB PDE
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Solution of PDE (analytical by Hennlock, valid only for the special choice of structural parameters)
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Hennlock's two-sector model:

Controls (generally true, no further simplification by Hennlock is used)
carbon-intensive consumption feedback:
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Finite-differencing schemes and numerical
solutions

@ explicit upwind scheme is used

@ no explicit boundaries are imposed, piecewise cubic Hermite
interpolation from the interior of the grid is used instead for
derivatives at the boundaries

© SIMD (single instruction, multiple data ) vector processing
optimized multi-dimensional arrays with Kronecker tensor products
are used throughout to make computations highly efficient

O iterations result in a stable (but somewhat slow) linear convergence
throughout, results can be improved to higher precision if required,
cold start can be used to split the execution in batches
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Finite-differencing schemes and numerical
solutions

— Numerical
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Figure : Hennlock HJB PDE: Value function

There is no discernible difference between analytical and numerical solutions for value function. There is also no
difference between analytical and numerical solutions for policies.

14



Relaxing Hennlock's assumptions

Capital intensity to 0.3 - typical value in growth models, instead of 1/2.
Different CES elasticity of substitution.

Figure : Policies: consumption of carbon intensive and carbon neutral
goods, robust vs. non-robust

We see more curvature and larger difference in numerical solution
between robust vs. non-robust specification

10/14



Anderson-Brock-Hansen-Sanstad (ABHS)
robust economic-climate model
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ABHS Controls
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consumption feedback:
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State constraints

There are additional state and choice constraints:
C,E,R,K>0
In order to stay in feasible region we need to assure that

Ki, > Ai exp[-Di,(To + Tir + M(Ro — R;) — T)]K,-f‘E”

ik yir o IT a0
= Cicsivsirsinia — OKis Vi firy IT 2y I

Ri Z Efk,i,,ir,fa,idav’ka ’f) IT7 Iaa Id

13 /14



Conclusion and future work

robust stochastic PDE for macroeconomics models with climate
coupling can be solved by free-boundary finite-difference methods

numerical methods are relatively simple and general

robust stochastic PDE approach allows to perform robustness
analysis quickly a variety of fundamentally different macroeconomics
models and uncover solutions for the entire state space

Future work

@ Pricing uncertainty over alternative horizons

@® Building dynamic games between the private sector and the
governments under alternative specifications of ambiguity

© Developing faster, more reliable finite-difference schemes

@ Using data to calibrate or estimate models
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