
Computational Economics: Practical Tools and
Techniques

Scientific computing (cont.)

Victor V. Zhorin

Computation Institute/BFI

Nov 20, 2013

Key points (review)

Types of computing: commercial software development vs. scientific
research

From real analysis to numerical methods and computing

Computer architecture: from naive serial code to vectorization and
parallelization

Low-level tools and techniques: programming languages, math
libraries, interactive agile prototyping, high performance computing

High-level tools and techniques: non-linear and linear optimizers,
using domain knowledge for efficient computing

Parallel programming concepts

Massively parallel processors ⇒ simpler numerical algorithms: larger
block-independent data frames with optimal function calls

All modern CPUs are in a sense massively parallel processors!

Hybrid computing: single-core HPC, multi-core and cluster
computing, many core CPU-GPU and Intel MIC computing

Mapping research ideas to computer architecture
going back and forth between your model and computing implementation

start mapping your model to computing architecture from the
ground up

single-core → representative optimizing agent with complex
dynamics

multi-core → heterogeneous independent agents processing
different shocks under common information set

fusion systems (clusters with Intel Phi co-processor,
CPU-GPU) → hierarchical, multiscale models, micro founded
macro models

Math libraries: from real analysis to computing
Implementation matters!

Intel MKL: industry-standard, can be fine-tuned to use OpenMP,
MPI efficiently

OpenBLAS - multi-threaded high performance implementation for
multi-core CPUs

MacOS X: Accelerate framework

MATLAB with Intel MKL ⇒ 5-6 times faster than open source
Fortran/BLAS

The GNU Scientific Library (GSL) - a C replacement for numerical
procedures written in Fortran (Netlib), NO high performance BLAS

EIGEN templates and Armadillo C++ linear algebra library, the
syntax (API) deliberately similar to MATLAB

R computations with Intel MKL and automatic offloading to Intel
Xeon Phi for big data

Scientific computing and business software development

version control (subversion, git), unit tests, use cases

modularity, reusability

need to budget time and resources to comply with the best
practices from business software development!
what went wrong with C++

Arrays are not a core part of the language
Pointers are everywhere with random holes in memory lanes!
Some important features of Fortran-90 only 20 years later
added as C/C++ extension in Intel Cilk Plus

Java: dynamically allocated or resizable arrays ⇒ very slow

CS favorite objects (lists, maps, trees) and concepts
(metaprogramming) are huge performance hogs

Recursions and lambda-calculus ⇒ hard to parallelize

NumPy, MATLAB, FORTRAN - a view over the memory,
strided memory model, fast performance lane, no slowing
down due to OO design and random pointers

Non-linear Optimization with derivatives:
one solver does not fit all

Gradients and Hessians are critical for Newton-based NL solvers

Solution update method: Sequential Quadratic Programming
(SQP), Interior-Point (IP)

Global optimum: trust region, line search

Penalty function, tolerance, feasibility

SNOPT

line-search SQP; null-space CG option
l1 exact penalty function

IPOPT - open source in COIN-OR

line-search filter algorithm

KNITRO

trust-region Newton, interior with CG option or direct
l1 exact penalty function
Active Set - for medium size problems with good initial guess

If your problem fails to be solved by IPOPT/SNOPT, it might be
solved by KNITRO or vice versa

Optimization with weakened assumptions : abandoning convexity requirement!

domain knowledge ⇒ efficient numerical algorithms

MATLAB fminsearch

Nelder-Mead Simplex (slow but reliable)

Augmented Lagrangian methods (Arrow & Solow, 1958), method of multipliers (Hestens, Powell, 1969)⇒
Pattern Search

maximize
X

f (X), s.t. h(X) = 0

Lagrangian
L(X ; Λ) = f (X) + Λ′h(X)

Gradient process
Ẋ = LX (X ; Λ); Λ̇ = LΛ(X ; Λ)

Modified (augmented) Lagrangian (based on Lemma by Debreu, Econometrica (1952))

L(X ; Λ|θ) = f − θh′h + Λ′h;

Gradient process
Ẋ = f ′X − 2θh′X h + h′X Λ; Λ̇ = h

or set V = Λ + 2θΛ̇ then
Ẋ = f ′X + h′XV

Λ represents current market price which rises or falls if excess demand is positive or negative.
V a kind of expected price, based on extrapolation of current rates of change

HOPSPACK (Hybrid Optimization Parallel Search PACKage)

with asynchronous pattern search solver (supports MPI, OpenMP) over user-defined objective and
nonlinear constraint functions (Fortran,C/C++, Perl, MATLAB, Python)

Numerical recipes and domain expertise:
textbook numerical recipes ⇒ build up accurate domain guidance

”Redistribution and Social Insurance”
Mikhail Golosov, Maxim Troshkin, Aleh Tsyvinski, 2013.

finite-horizon discrete-time dynamic programming problem with a three-dimensional continuous state space

three-stage computational procedure

shape-preserving least absolute deviation (LAD) value function iteration method with Chebyshev
polynomials

essential to have an efficient and robust optimization algorithm to solve mechanism design problems

mechanism design problem is a bi-level maximization problem

the outer-level maximization of the planner has to take into account the best response of the agents, which
is the outcome of the inner-level maximization of each agent type with respect to the type reported

implementation in AMPL/KNITRO

interior-point optimization with CG iteration for inner-level, active-set with sequential linear quadratic
programming iteration at outer level

globalization strategy - explore multiple feasible starting points

simple age-dependent linear taxes - welfare loss of 0.9% of consumption equivalent

”Insurance and Taxation over the Life Cycle”
Emmanuel Farhi and Ivan Werning, 2013. Review of Economic Studies, 80.

It is surprising just how well this relatively simple policy performs. It delivers a welfare gain of 1.47% in
lifetime consumption, compared to the 1.56% obtained by the second best. Remarkably, age-dependent
linear taxes deliver 95% of the welfare gains of the second-best.

our characterization of the second best, theoretical and numerical, provides not only useful insights, but
can also deliver detailed and surprisingly accurate guidance for simpler tax systems

Non-convex problems: moral hazard and adverse selection
Su-Judd (2007), based on Alexander Karaivanov (2001): ”Computing Moral Hazard Programs with Lotteries Using Matlab”

Part 1: Deterministic contract (non-linear program)

Action-Output
A⊗Q : {a1, ...ana} ⊗ {q1, ...qnq}
Stochastic Production Function p(q|a)

Compensation Schedule
C(Q) = {c(q1), ..., c(qnq)}
Expected utility for the agents ω(c , a) =

∑
q∈Q

p(q|a)u(c(q), a)

Deterministic contract (non-linear program)

Principal utility U [q − c(a)], q − c(a): net profit

maximize
(c,a)

∑
q∈Q

p(q|a)U [q − c(a)]

s.t.

Participation Constraints:

ω(c , a) ≥ ω0

Incentive Compatibility Constraints (ICC):

ω(c , a) ≥ ω(c , a), ∀a ∈ A

Global optimum is not guaranteed

Sensitive to starting conditions and choice of NL solver

Computing Moral Hazard Programs:
make the problem convex by using lotteries

Part 2: Prescott-Townsend Lotteries (linear program)

Global optimum (conditional on the grid) is reliably achieved

maximize
π(q,c,a)

[∑
Q,C,A π (q, c , a)U [q − c]

]
π(q, c , a) is a probability distribution

Participation Constraints:∑
Q,C,A π (q, c , a) u (c , a) ≥ u0

Mother Nature/Technology Constraints:
∀ {q, a} ∈ Q ×A∑

C π(q, c , a) = P (q|a)
∑

Q,C π(q, c , a)

Incentive Compatibility Constraints (ICC) for action variables:
∀ a, â ∈ A×A∑

Q,C π (q, c , a) u(c , a) ≥
∑

Q,C π (q, c , a) P(q,â)
P(q,a)u(c , â)

Linear Programming: the choice of solver matters

MATLAB linprog

Open source: GLPK, lp solve, CLP, SoPlex

IBM CPLEX , XPRESS

Gurobi: Interfaces to R, MATLAB, Python

reliable information is hard to find, obsolescence is an issue

need to be aware before you know you need it

SCIP-L (using CLP);SCIP-S (using SoPlex)

”Analysis of commercial and free and open source solvers for linear optimization problems”, B. Meindl and M.

Templ, 2012.

Hybrid approach to Moral Hazard and Adverse Selection Programs

Su-Judd (2007)

Step 1: Solve LP in lotteries on coarse grids which guarantees
solution that can serve as a good starting point - close to
global optimum

Step 2: Use this information to exclude bad (nonsensical)
local traps from non-linear constrained optimization

Step 3: (locally convergent only!) Combine with multi-start
option in non-linear solver to converge quickly on (hopefully)
true global optimum

Step 4: (optional) Iterate

Step 5: (optional) Do Structural Estimation in parallel

Parallel Programming:
same task done faster or more complex task done in feasible time

SAXPY, single-precision real Alpha X Plus Y (BLAS, level 1):

Y ← α ∗ X + Y

where Xi , Yi , i ∈ [1, n] - vectors

Instruction (control) parallelism, strong scaling

Scalar uniprocessor - 2n steps
Two functional units (an adder and a multiplier) - n + 1 steps,
speedup 2n

n+1 ≈ 2
Amdahl’s law:
If s is a fraction of code that is executed serially then speedup
from parallelizing p = 1− s fraction using N processors:

Speedup ≤ 1

s + p/N

Data parallelism: two steps with n processors handling α ∗ X and Y
simultaneously, speedup is proportional to N < n

Gustafson-Barsis law, weak scaling:

Speedup = s + N ∗ (1− s)

Parallel Programming: types of parallel computing models

Data parallel - the same instructions are carried out simultaneously on multiple data items (SIMD)

Task parallel - different instructions on different data (MIMD)

MIMD: Message passing (MPI) - overlapping computation and communication (!) , MATLAB Distributed
Computing Server with Parallel Computing Toolbox

SIMD: Array Programming (implicit parallelization), NumPy, High Performance Fortran, Vectorization
(and Tensorization) in Matlab

Task/data parallel paradigms : OpenMP, Fortran 2008 DO CONCURRENT

Hybrid Programming: CPU-GPU, Intel Phi MIC architecture, SIMD→OpenMP→MPI

Parallel Programming: MPI in 5 minutes, task parallelism

Dynamic programming: value function iterations, heterogeneous types mapped to multiple processors

1 use mpi

2 i n t e g e r : : nproc , id , i e r r , s n d r ! MPI

3 i n t e g e r , dimens ion (MPI STATUS SIZE) : : STATUS ! MPI

4 ! i n i t i a l i z i n g MPI

5 c a l l MPI INIT (i e r r)

6 c a l l MPI COMM SIZE(MPI COMM WORLD, nproc , i e r r)

7 c a l l MPI COMM RANK(MPI COMM WORLD, id , i e r r)

8
9 do i=n ,1 ,−1 ! s t a t e space

10 <compute V(i , t , i d +1)>

11 enddo ! s t a t e space

12 c a l l MPI BARRIER (MPI COMM WORLD, i e r r)

13 do i =1, nproc−1

14 i f (i d . eq . i) then

15 c a l l MPI SEND(V, n , MPI DOUBLE PRECISION , 0 , id ,MPI COMM WORLD, i e r r)

16 end i f ! i d > 0

17 . . .

18 i f (i d . eq . 0) then

19 c a l l MPI RECV(V, n , MPI DOUBLE PRECISION , MPI ANY SOURCE , MPI ANY TAG ,
MPI COMM WORLD,STATUS, i e r r)

20 s n d r=STATUS(MPI SOURCE)

21 VV(1 : n , t , s n d r +1)=V

22 end i f !

23 c a l l MPI BARRIER (MPI COMM WORLD, i e r r)

24 enddo ! i

25 c a l l MPI FINALIZE (i e r r)

Tensors and Tensorization: implicit parallelization

What is a tensor?

Tensor is an element of tensor space
Tensor space is a new vector space W constructed from
components of vector spaces, for exampe, given V1 and V2 :
order two tensor W = V1 ⊗ V2

Is a tensor a kind of vector? - Yes

Is a matrix a special kind of tensor? - Yes and No

With tensorization technique, multidimensional (multivariate)
computations (linear programming, dynamic programming,
MLE, likelihood ratio statistics) are much faster and more
transparent than the corresponding single-dimension
(univariate) computations

Hypercubes and hyperspheres:
tensorization and non-cartesian (adaptive, sparse) grids

tensorization: robust, simple, stable, highly efficient, easily
parallelizable brute-force attack

human desire for more photo and video drives engineers to
manufacture more efficient processors

SIMD: common in modern processors in order to improve the
performance of multimedia use (large number of vectors, data
frames)

GPUs and MICs are coming

Computing Moral Hazard Programs: SIMD and
Tensorization

Discretization: C, Q and A are finite ordered sets.

Key idea: build up multidimensional tensor object from low-dimensional vector objects while keeping the
tensor structure in one-dimensional vector projection, then apply math operations to vectorized tensors

Tensor product C ⊗ Q ⊗A
MATLAB Kronecker tensor product: KRON(X , Y) = X ⊗ Y

1 g r c = l i n s p a c e (0 , 4 , 4 1) ; %consumpt ion

2 grq = [1 4] ;%output

3 g r a = [0 . 2 . 4 . 6 . 8 1] ; %ac t i o n

4 nc = l e n g t h (g r c) ; nq = l e n g t h (grq) ; na = l e n g t h (g r a) ;

5
6
7 %dimens ion o f l o t t e r y v e c t o r pe r type

8 N = na∗nq∗nc ;

9
10 C = kron (ones (1 , na∗nq) , g r c) ;

11 Q = kron (kron (ones (1 , na) , grq) , ones (1 , nc)) ;

12 A = kron (gra , ones (1 , nc∗nq)) ;

13
14 %p a r t i c i p a t i o n c o n s t r a i n t s

15 b neq = −U 0 ;

16 A neq = −u (C , A) ;

17
18 %ob j e c t i v e f u n c t i o n

19 Obj = Q−C ;

Parallel Linear Algebra: ScaLAPACK and PETSc

ScaLAPACK:

extends the LAPACK library to MIMD with distributed memory

Language : Fortran, interfaces: C, C++, Fortran

Dense systems

Support in Commercial Packages: MKL - Intel, IMSL

PETSc:

Portable Extensible Toolkit for Scientific Computation

Scalable (parallel) solution of linear and non-linear PDEs

Sparse systems

Uses MPI for all parallel communications

Distributed arrays

Parallel Krylov subspace methods

Parallel preconditioners

Parallel (Newton-based) nonlinear solvers

GPU: OpenACC vs CUDA and OpenCL

CUDA and OpenCL - highly complex C/Fortran instructions

OpenACC - directive based standard that provides hints to compiler
for a section of code to be offloaded from a host CPU to an
attached accelerator.

OpenMP (fully independent threads)→ OpenACC (data dependent)

1 s u b r o u t i n e saxpy (n , a , x , y)

2 r e a l (8) : : x (:) , y (:) , a

3 i n t e g e r : : n , i

4
5 !OpenMP d i r e c t i v e

6 ! $omp p a r a l l e l do

7 !OpenACC d i r e c t i v e

8 ! $acc k e r n e l s

9 do i =1,n

10 y (i) = a∗x (i)+y (i)

11 enddo

12 ! $acc end k e r n e l s

13 ! $ omp end p a r a l l e l do

14 end s u b r o u t i n e saxpy

15 . . .

16 $ main program

17 $ c a l l SAXPY on 1M e l e m e n t s

18 c a l l saxpy (2∗∗20 , 2 . 0 , data x , d a t a y)

Hybrid Matrix Algebra on GPU and Multicore Architectures:

MAGMA and Monte-Carlo - rethinking the basic computing concepts

MAGMA:

”the number of cores will continue to escalate because of the desire to pack
more and more components on a chip while avoiding the power wall, instruction
level parallelism wall, and the memory wall”

”there seems to be no doubt that future generations of computer systems,
ranging from laptops to supercomputers, will consist of a composition of
heterogeneous components”

M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. ”Accelerating linear system solutions using randomization
techniques.” ACM Transactions on Mathematical Software (TOMS) 39, no. 2 (2013)

New hybrid/fusion algorithms:

Iterative MC (not to be confused with Monte Carlo simulations or integrations),
main idea - construct artificial random process and to prove that the
mathematical expectation of the process is equal to the unknown solution (or its
functional) of the problem: ”Monte Carlo Methods For Applied Scientists”
by Ivan T. Dimov, 2005.

K. Judd, L. Maliar and S. Maliar, (2012). ”Merging Simulation and Projection
Approaches to Solve High-Dimensional Problems”.

Factors of computing performance:
from serial optimization to vectorization and parallelization

Vectorization 7x by taking advantage of SIMD registers and
SIMD instruction, strong scaling

Parallelization on 16-cores, OpenMP multithreading 19x, weak
scaling

Phi co-processor, 244 threads, OpenMP multithreading 3.3x,
weak scaling

Ninja gap: from pricing 4.7 Million options per second to pricing 12.3 Billion options per second

Shuo Li ,”Achieving Superior Performance on Black-Scholes Valuation Computing using Intel Xeon Phi

Coprocessors”, 2013

RCC at University of Chicago (Midway cluster)

ready to access high-performance computing for you

284 Shared Compute Nodes, 4544 Cores

Each node has two eight-core 2.6GHz Intel Xeon E5-2670 ”Sandy Bridge” processors with 32GB of main
memory

GPU Computing (GPU), 2 Tesla K20 devices per node

MIC nodes, 2 Intel Phi devices per node

Shared-Memory (SM), with 1TB main memory

R, Python, MATLAB, STATA, IPOPT, Armadillo, Intel MKL, Intel MPI, Intel C++ and Fortran compilers,
Portland C++ and Fortran

1 #!/ b in / bash

2
3 #SBATCH - -job−name=t e s t j o b

4 #SBATCH - -output=t e s t . out

5 #SBATCH - -e r r o r=t e s t . e r r

6 #SBATCH - -nodes=1−1 - -cpus−per−t a s k=12

7 #SBATCH - -t ime=1−12:00:00

8 module l o a d matlab i n t e l m p i

9 matlab −n o d i s p l a y −r ” t e s t ”

10
11 s b a t c h t e s t . batch

12 s a l l o c - -e x c l u s i v e −n1 s r u n −n1 −N1 - -pty - -p r e s e r v e−env $SHELL

13 s c o n t r o l show node midway−g19−01

14 NodeName=midway−g19−01 Arch=x86 64 C o r e s P e r S o c k e t=8

15 CPUAlloc=16 CPUErr=0 CPUTot=16 CPULoad=15.97 F e a t u r e s=l c , e5−2670 ,32G, n o i b

16 OS=L i n u x RealMemory=32000 AllocMem=32000 S o c k e t s=2 Boards=1

Large-scale high performance computing resources

DOE Oak Ridge Titan and TACC Stampede, open to researchers
through the U.S. DOE INCITE program and NSF XSEDE program

Number 2 and number 6 on top500.org list of the world’s top
supercomputers

560K cores, 710 terabytes of RAM, 8,209 kW (Titan); 462K cores,
192 terabytes of RAM, 4,510 kW (Stampede)

Titan: 16C AMD Opteron CPUs, 2.2GHz and NVIDIA Tesla K20
GPU; Stampede : PowerEdge C8220, Xeon E5-2680 8C 2.700GHz,
Intel Xeon Phi

27 Peta(1015)FLOPS (Titan), 8.5 PetaFLOPS (Stampede) (your
PC ≈ 5-20 Giga(109)FLOPS)

bitcoin network: ≈ 51 exaFLOPS (Nov 12, 2013)

top500.org

