Computational Economics: Practical Tools and
Techniques
Scientific computing (cont.)

Victor V. Zhorin

Computation Institute/BFI

Nov 20, 2013

BECKER FRIEDMAN INSTITUTE
FOR RESEARCH IN ECONOMICS
THE UNIVERSITY OF CHICAGO

Key points (review)

Types of computing: commercial software development vs. scientific
research

From real analysis to numerical methods and computing

Computer architecture: from naive serial code to vectorization and
parallelization

Low-level tools and techniques: programming languages, math
libraries, interactive agile prototyping, high performance computing

High-level tools and techniques: non-linear and linear optimizers,
using domain knowledge for efficient computing

Parallel programming concepts

Massively parallel processors = simpler numerical algorithms: larger
block-independent data frames with optimal function calls

All modern CPUs are in a sense massively parallel processors!

Hybrid computing: single-core HPC, multi-core and cluster
computing, many core CPU-GPU and Intel MIC computing

Mapping research ideas to computer architecture

going back and forth between your model and computing implementation

o start mapping your model to computing architecture from the
ground up

o single-core — representative optimizing agent with complex
dynamics

o multi-core — heterogeneous independent agents processing
different shocks under common information set

o fusion systems (clusters with Intel Phi co-processor,
CPU-GPU) — hierarchical, multiscale models, micro founded
macro models

Math libraries: from real analysis to computing

Implementation matters!

o Intel MKL: industry-standard, can be fine-tuned to use OpenMP,
MPI efficiently

o OpenBLAS - multi-threaded high performance implementation for
multi-core CPUs

o MacOS X: Accelerate framework

o MATLAB with Intel MKL = 5-6 times faster than open source
Fortran/BLAS

o The GNU Scientific Library (GSL) - a C replacement for numerical
procedures written in Fortran (Netlib), NO high performance BLAS

o EIGEN templates and Armadillo C++ linear algebra library, the
syntax (API) deliberately similar to MATLAB

@ R computations with Intel MKL and automatic offloading to Intel
Xeon Phi for big data

Scientific computing and business software development

o version control (subversion, git), unit tests, use cases
o modularity, reusability
o need to budget time and resources to comply with the best
practices from business software development!
o what went wrong with C++
o Arrays are not a core part of the language
o Pointers are everywhere with random holes in memory lanes!
o Some important features of Fortran-90 only 20 years later
added as C/C++ extension in Intel Cilk Plus

o Java: dynamically allocated or resizable arrays = very slow

o CS favorite objects (lists, maps, trees) and concepts
(metaprogramming) are huge performance hogs

o Recursions and lambda-calculus = hard to parallelize

o NumPy, MATLAB, FORTRAN - a view over the memory,
strided memory model, fast performance lane, no slowing
down due to OO design and random pointers

Non-linear Optimization with derivatives:

one solver does not fit all

o Gradients and Hessians are critical for Newton-based NL solvers
o Solution update method: Sequential Quadratic Programming
(SQP), Interior-Point (IP)
o Global optimum: trust region, line search
o Penalty function, tolerance, feasibility
o SNOPT
line-search SQP; null-space CG option
l, exact penalty function
o IPOPT - open source in COIN-OR
line-search filter algorithm
o KNITRO
trust-region Newton, interior with CG option or direct
h, exact penalty function
Active Set - for medium size problems with good initial guess

o If your problem fails to be solved by IPOPT/SNOPT, it might be
solved by KNITRO or vice versa

Optimization with weakened assumptions : abandoning convexity requirement!

domain knowledge = efficient numerical algorithms

Q@ MATLAB fminsearch
Nelder-Mead Simplex (slow but reliable)

O Augmented Lagrangian methods (Arrow & Solow, 1958), method of multipliers (Hestens, Powell, 1969) =
Pattern Search
maxi)l;nize f(X),s.t. h(X) =0

Lagrangian
£(X; A) = £(X) + N h(X)

Gradient process . .
X = Lx(X;A); A= EA(X;)

Modified (augmented) Lagrangian (based on Lemma by Debreu, Econometrica (1952))
£(X;N0) = f — 6h h + N'b;

Gradient process
v / / / A
X = fy — 20hyh+ KN A =h

or set V = A + 20A then .
X = fy + hxV

A represents current market price which rises or falls if excess demand is positive or negative.
V a kind of expected price, based on extrapolation of current rates of change

©Q HOPSPACK (Hybrid Optimization Parallel Search PACKage)
with asynchronous pattern search solver (supports MPI, OpenMP) over user-defined objective and
nonlinear constraint functions (Fortran,C/C++, Perl, MATLAB, Python)

Numerical recipes and domain expertise:

textbook numerical recipes = build up accurate domain guidance

" Redistribution and Social Insurance”
Mikhail Golosov, Maxim Troshkin, Aleh Tsyvinski, 2013.

@ finite-horizon discrete-time dynamic programming problem with a three-dimensional continuous state space
Q three-stage computational procedure

@ shape-preserving least absolute deviation (LAD) value function iteration method with Chebyshev
polynomials

Q essential to have an efficient and robust optimization algorithm to solve mechanism design problems

©

mechanism design problem is a bi-level maximization problem

@ the outer-level maximization of the planner has to take into account the best response of the agents, which
is the outcome of the inner-level maximization of each agent type with respect to the type reported

@ implementation in AMPL/KNITRO

Q interior-point optimization with CG iteration for inner-level, active-set with sequential linear quadratic
programming iteration at outer level

@ globalization strategy - explore multiple feasible starting points

O simple age-dependent linear taxes - welfare loss of 0.9% of consumption equivalent

"Insurance and Taxation over the Life Cycle”
Emmanuel Farhi and lvan Werning, 2013. Review of Economic Studies, 80.
@ It is surprising just how well this relatively simple policy performs. It delivers a welfare gain of 1.47% in

lifetime consumption, compared to the 1.56% obtained by the second best. Remarkably, age-dependent
linear taxes deliver 95% of the welfare gains of the second-best.

@ our characterization of the second best, theoretical and numerical, provides not only useful insights, but
can also deliver detailed and surprisingly accurate guidance for simpler tax systems

Non-convex problems: moral hazard and adverse selection

Su-Judd (2007), based on Alexander Karaivanov (2001): " Computing Moral Hazard Programs with Lotteries Using Matlab”

Part 1: Deterministic contract (non-linear program)
o Action-Output

A® Q:{a1,...ana} ®{q1,..-Gng}
o Stochastic Production Function p(q|a)
o Compensation Schedule

C(Q) = {c(a), -, c(qnqg)}

o Expected utility for the agents w(c,a) = >_ p(q|a)u(c(q), a)
qeQ

Deterministic contract (non-linear program)

Principal utility 4[q — c(a)], g — c(a): net profit

maximize > p(q|a)ih[qg — c(a)]
qeQ

c,a

s.t.

Participation Constraints:

w(c,a) > wo

Incentive Compatibility Constraints (ICC):
w(c,a) > w(c,a),Vae A

o Global optimum is not guaranteed

o Sensitive to starting conditions and choice of NL solver

Computing Moral Hazard Programs:

make the problem convex by using lotteries

Part 2: Prescott-Townsend Lotteries (linear program)
o Global optimum (conditional on the grid) is reliably achieved

maximize [ZQ)CA’ATF (q,c,a)i[qg — c]}

7(q,c,a)
o 7(q,c,a) is a probability distribution
o Participation Constraints:
> 0.c,am(q,c,a)u(c,a) > u
o Mother Nature/Technology Constraints:
V{g,a} e 9 x A
>c7(q,c,3) = P(qla) >g ¢ (g, c,3)
o Incentive Compatibility Constraints (ICC) for action variables:
VadeAx A

P(q,4 A
Yocem(a.ca)u(c,a) >3 g m(g,c,3) pPu(c, 4)

Linear Programming: the choice of solver matters

MATLAB linprog

IBM CPLEX , XPRESS

© ©6 06 00 o o

Open source: GLPK, Ip_solve, CLP, SoPlex

Gurobi: Interfaces to R, MATLAB, Python
reliable information is hard to find, obsolescence is an issue

need to be aware before you know you need it

running time instances solved

solved (%)

CBC 10.20
CPLEX 1.45
GLPK 22.11
GUROBI 1.00
LP_SOLVE 19.40
SCIP-C 3.76
SCIP-L 6.40
SCIP-S 5.33
XPRESS 1.29

41
73
3
T
5
63
52
57
74

47.13
83.91

3.45
88.51

5.75
72.41
59.77
65.52
85.06

SCIP-L (using CLP);SCIP-S (using SoPlex)

" Analysis of commercial and free and open source solvers for linear optimization problems”,

Tembl. 2012.

B. Meindl and M.

Hybrid approach to Moral Hazard and Adverse Selection Programs
Su-Judd (2007)

o Step 1: Solve LP in lotteries on coarse grids which guarantees
solution that can serve as a good starting point - close to
global optimum

o Step 2: Use this information to exclude bad (nonsensical)
local traps from non-linear constrained optimization

o Step 3: (locally convergent only!) Combine with multi-start
option in non-linear solver to converge quickly on (hopefully)
true global optimum

o Step 4: (optional) lterate
o Step 5: (optional) Do Structural Estimation in parallel

Parallel Programming:

same task done faster or more complex task done in feasible time

SAXPY, single-precision real Alpha X Plus Y (BLAS, level 1):
Y+—~axX+Y

where X;, Y;, i € [1, n] - vectors
o Instruction (control) parallelism, strong scaling
o Scalar uniprocessor - 2n steps
o Two functional units (an adder and a multiplier) - n 4 1 steps,
speedup % ~
o Amdahl’s law:
If s is a fraction of code that is executed serially then speedup
from parallelizing p = 1 — s fraction using N processors:

Speedup < ————
P uP*s+p/N

o Data parallelism: two steps with n processors handling o %« X and Y
simultaneously, speedup is proportional to N < n

o Gustafson-Barsis law, weak scaling:

Speedup = s+ N x (1 —s)

Parallel Programming: types of parallel computing models

()

o,
%,

] Instruction Ox
[] Data EE
[Results D\:

OEEE
OEEE

Data parallel - the same instructions are carried out simultaneously on multiple data items (SIMD)
Task parallel - different instructions on different data (MIMD)

MIMD: Message passing (MPI) - overlapping computation and communication (!) , MATLAB Distributed
Computing Server with Parallel Computing Toolbox

SIMD: Array Programming (implicit parallelization), NumPy, High Performance Fortran, Vectorization
(and Tensorization) in Matlab

Task/data parallel paradigms : OpenMP, Fortran 2008 DO CONCURRENT
Hybrid Programming: CPU-GPU, Intel Phi MIC architecture, SIMD—OpenMP— MPI

Parallel Programming: MPI in 5 minutes, task parallelism

Dynamic programming: value function iterations, heterogeneous types mapped to multiple processors

1| use mpi

2 integer :: nproc,id, ierr ,sndr ! MPI

3 integer , dimension (MPI_.STATUS_SIZE) :: STATUS ! MPI
41 1 initializing MPI

5| call MPLINIT(ierr)

6| call MPI_.COMM_SIZE(MPI.COMM.WORLD, nproc , ierr)
7| call MPI_COMM_RANK (MPI.COMM_WORLD, id , ierr)

8

9 do i=n,1,—1 ! state space

10 <compute V(i, t,id+1)>

11 enddo ! state space

12 call MPI_BARRIER (MPI.COMM_WORLD, ierr)
13 do i=1,nproc—1

14 if (id .eq. i) then

15 call MPI.SEND(V,n, MPI_.DOUBLE_PRECISION 0, id ,MPLCOMM.WORLD, ierr)

16 end if ! id> 0

17] ...

18 if(id .eq. 0) then

19 call MPILRECV(V,n, MPI.DOUBLE_PRECISION , MPI_.ANY_SOURCE , MPI_ANY_TAG,
MPI.COMM_WORLD, STATUS, ierr)

20 sndr=STATUS(MPI_SOURCE)

21 W (1l:n,t,sndr+1)=V

22 end if !

23 call MPI_BARRIER (MPI.COMM_WORLD, ierr)
24| enddo ! i
25| call MPI_FINALIZE (ierr)

Tensors and Tensorization: implicit parallelization

o What is a tensor?
o Tensor is an element of tensor space
o Tensor space is a new vector space W constructed from
components of vector spaces, for exampe, given V; and V; :
order two tensor W = V; @ V>
o Is a tensor a kind of vector? - Yes
o Is a matrix a special kind of tensor? - Yes and No
o With tensorization technique, multidimensional (multivariate)

computations (linear programming, dynamic programming,
MLE, likelihood ratio statistics) are much faster and more
transparent than the corresponding single-dimension
(univariate) computations

Hypercubes and hyperspheres:

tensorization and non-cartesian (adaptive, sparse) grids

o tensorization: robust, simple, stable, highly efficient, easily
parallelizable brute-force attack

© human desire for more photo and video drives engineers to
manufacture more efficient processors

o SIMD: common in modern processors in order to improve the
performance of multimedia use (large number of vectors, data
frames)

o GPUs and MICs are coming

Computing Moral Hazard Programs: SIMD and
Tensorization

Q Discretization: C, Q and A are finite ordered sets.
Q Key idea: build up multidimensional tensor object from low-dimensional vector objects while keeping the
tensor structure in one-dimensional vector projection, then apply math operations to vectorized tensors
Q Tensor product C ® Q ® A
O MATLAB Kronecker tensor product: KRON(X,Y) =X ® Y
grc = linspace(0,4,41); %consumption
grq = [1 4];%output

gra = [0 .2 .4 .6 .8 1]; %action
nc = length(grc);nq = length(grq);na = length(gra);

%dimension of lottery vector per type
N = na*ng#*nc;

OOO~NOOCTAWN

10| C = kron(ones(1,na%nq),grc);
1l|Q = kron(kron(ones(1,na),grq) , ones(1,nc));
12| A = kron(gra,ones(1l,nc*nq));

14 %participation constraints
15 b_neq = —-U_0;
16| A-neq = —u(C,A);

18| %objective function
19| obj = @<C;

Parallel Linear Algebra: ScaLAPACK and PETSc

ScalLAPACK:
o extends the LAPACK library to MIMD with distributed memory
o Language : Fortran, interfaces: C, C++, Fortran
@ Dense systems
o Support in Commercial Packages: MKL - Intel, IMSL
PETSc:
o Portable Extensible Toolkit for Scientific Computation

Qo

Qo

Scalable (parallel) solution of linear and non-linear PDEs
Sparse systems

Uses MPI for all parallel communications

Distributed arrays

Parallel Krylov subspace methods

Parallel preconditioners

Parallel (Newton-based) nonlinear solvers

GPU: OpenACC vs CUDA and OpenCL

o CUDA and OpenCL - highly complex C/Fortran instructions

o OpenACC - directive based standard that provides hints to compiler
for a section of code to be offloaded from a host CPU to an
attached accelerator.

o OpenMP (fully independent threads) — OpenACC (data dependent)

1| subroutine saxpy(n, a, x, y)
2 real (8) :: x(:), y(:), a
3 integer :: n, i

4

5 10OpenMP directive

6| /$omp parallel do

7 10penACC directive

8| /$acc kernels

9| do i=1,n

10]y(i) = asx(i)+y(i)

11| enddo

12| 1$acc end kernels
13| 1$ omp end parallel do
14| end subroutine saxpy

16| $ main program
17|$ call SAXPY on IM elements
18| call saxpy (2%%20, 2.0, data_x, data.y)

Hybrid Matrix Algebra on GPU and Multicore Architectures:

MAGMA and Monte-Carlo - rethinking the basic computing concepts

MAGMA:

@ "the number of cores will continue to escalate because of the desire to pack
more and more components on a chip while avoiding the power wall, instruction
level parallelism wall, and the memory wall”

@ "there seems to be no doubt that future generations of computer systems,
ranging from laptops to supercomputers, will consist of a composition of
heterogeneous components”

M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. "Accelerating linear system solutions using randomization
techniques.” ACM Transactions on Mathematical Software (TOMS) 39, no. 2 (2013)

New hybrid/fusion algorithms:

O lterative MC (not to be confused with Monte Carlo simulations or integrations),
main idea - construct artificial random process and to prove that the
mathematical expectation of the process is equal to the unknown solution (or its
functional) of the problem: "Monte Carlo Methods For Applied Scientists”
by Ivan T. Dimov, 2005.

O K. Judd, L. Maliar and S. Maliar, (2012). " Merging Simulation and Projection
Approaches to Solve High-Dimensional Problems”.

Factors of computing performance:

from serial optimization to vectorization and parallelization

o Vectorization 7x by taking advantage of SIMD registers and
SIMD instruction, strong scaling

o Parallelization on 16-cores, OpenMP multithreading 19x, weak
scaling

o Phi co-processor, 244 threads, OpenMP multithreading 3.3x,
weak scaling

Ninja gap: from pricing 4.7 Million options per second to pricing 12.3 Billion options per second
Shuo Li ,” Achieving Superior Performance on Black-Scholes Valuation Computing using Intel Xeon Phi

Coprocessors”, 2013

RCC at University of Chicago (Midway cluster)

ready to access high-performance computing for you

Q 284 Shared Compute Nodes, 4544 Cores
@ Each node has two eight-core 2.6GHz Intel Xeon E5-2670 " Sandy Bridge” processors with 32GB of main
memory
@ GPU Computing (GPU), 2 Tesla K20 devices per node
@ MIC nodes, 2 Intel Phi devices per node
@ Shared-Memory (SM), with 1TB main memory
QO R, Python, MATLAB, STATA, IPOPT, Armadillo, Intel MKL, Intel MPI, Intel C++ and Fortran compilers,
Portland C++ and Fortran
1| #!/bin/bash
2
3| #SBATCH --job—name=test_job
4 #SBATCH --output=test.out
5 #SBATCH --error=test . err
6 #SBATCH --nodes=1—1 --cpus—per—task=12
7| #SBATCH --time=1—12:00:00
8| module load matlab intelmpi
9| matlab —nodisplay —r "test”
10
11| sbatch test.batch
12| salloc --exclusive —nl srun —nl —N1 --pty --preserve—env $SHELL
13| scontrol show node midway—gl19—01
14 NodeName=midway—gl19—01 Arch=x86_64 CoresPerSocket=8
15 CPUAIlloc=16 CPUErr=0 CPUTot=16 CPULoad=15.97 Features=Ilc ,e5—2670,32G, noib
16 OS=Linux RealMemory=32000 AllocMem=32000 Sockets=2 Boards=1

Large-scale high performance computing resources

o DOE Oak Ridge Titan and TACC Stampede, open to researchers
through the U.S. DOE INCITE program and NSF XSEDE program

o Number 2 and number 6 on top500.org list of the world’s top
supercomputers

o 560K cores, 710 terabytes of RAM, 8,209 kW (Titan); 462K cores,
192 terabytes of RAM, 4,510 kW (Stampede)

o Titan: 16C AMD Opteron CPUs, 2.2GHz and NVIDIA Tesla K20
GPU; Stampede : PowerEdge C8220, Xeon E5-2680 8C 2.700GHz,
Intel Xeon Phi

0 27 Peta(10'®)FLOPS (Titan), 8.5 PetaFLOPS (Stampede) (your
PC ~ 5-20 Giga(10°)FLOPS)
o bitcoin network: =~ 51 exaFLOPS (Nov 12, 2013)

top500.org

